Group action invariants
| Degree $n$ : | $7$ | |
| Transitive number $t$ : | $7$ | |
| Group : | $S_7$ | |
| CHM label : | $S7$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7), (1,2) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
14T46, 21T38, 30T565, 35T31, 42T411, 42T412, 42T413, 42T418Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 1, 1 $ | $504$ | $5$ | $(2,3,5,4,6)$ |
| $ 2, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $(1,7)$ |
| $ 2, 2, 1, 1, 1 $ | $105$ | $2$ | $(3,4)(5,6)$ |
| $ 3, 1, 1, 1, 1 $ | $70$ | $3$ | $(3,6,5)$ |
| $ 3, 2, 1, 1 $ | $420$ | $6$ | $(1,7)(3,5,6)$ |
| $ 5, 2 $ | $504$ | $10$ | $(1,7)(2,4,3,6,5)$ |
| $ 2, 2, 2, 1 $ | $105$ | $2$ | $(1,3)(2,4)(5,7)$ |
| $ 3, 3, 1 $ | $280$ | $3$ | $(1,2,7)(3,4,5)$ |
| $ 6, 1 $ | $840$ | $6$ | $(1,5,2,3,7,4)$ |
| $ 7 $ | $720$ | $7$ | $(1,2,5,6,4,3,7)$ |
| $ 3, 2, 2 $ | $210$ | $6$ | $(1,7)(2,4)(3,6,5)$ |
| $ 4, 1, 1, 1 $ | $210$ | $4$ | $(1,4,7,2)$ |
| $ 4, 3 $ | $420$ | $12$ | $(1,2,7,4)(3,6,5)$ |
| $ 4, 2, 1 $ | $630$ | $4$ | $(1,4,7,2)(3,6)$ |
Group invariants
| Order: | $5040=2^{4} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 4 4 3 2 4 3 3 2 1 1 . 4 1 1 3
3 2 1 2 1 1 1 1 1 . . . 1 2 1 .
5 1 1 . . . . . . 1 1 . . . . .
7 1 . . . . . . . . . 1 . . . .
1a 2a 3a 6a 2b 4a 6b 12a 5a 10a 7a 2c 3b 6c 4b
2P 1a 1a 3a 3a 1a 2b 3a 6b 5a 5a 7a 1a 3b 3b 2b
3P 1a 2a 1a 2a 2b 4a 2b 4a 5a 10a 7a 2c 1a 2c 4b
5P 1a 2a 3a 6a 2b 4a 6b 12a 1a 2a 7a 2c 3b 6c 4b
7P 1a 2a 3a 6a 2b 4a 6b 12a 5a 10a 1a 2c 3b 6c 4b
X.1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
X.2 6 -4 3 -1 2 -2 -1 1 1 1 -1 . . . .
X.3 14 -6 2 . 2 . 2 . -1 -1 . -2 -1 1 .
X.4 14 -4 -1 -1 2 2 -1 -1 -1 1 . . 2 . .
X.5 15 -5 3 1 -1 -1 -1 -1 . . 1 3 . . -1
X.6 35 -5 -1 1 -1 1 -1 1 . . . -1 -1 -1 1
X.7 21 -1 -3 -1 1 1 1 1 1 -1 . 3 . . -1
X.8 21 1 -3 1 1 -1 1 -1 1 1 . -3 . . -1
X.9 20 . 2 . -4 . 2 . . . -1 . 2 . .
X.10 35 5 -1 -1 -1 -1 -1 -1 . . . 1 -1 1 1
X.11 14 4 -1 1 2 -2 -1 1 -1 -1 . . 2 . .
X.12 15 5 3 -1 -1 1 -1 1 . . 1 -3 . . -1
X.13 14 6 2 . 2 . 2 . -1 1 . 2 -1 -1 .
X.14 6 4 3 1 2 2 -1 -1 1 -1 -1 . . . .
X.15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|