Show commands:
Magma
magma: G := TransitiveGroup(7, 7);
Group action invariants
Degree $n$: | $7$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $7$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_7$ | ||
CHM label: | $S7$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5,6,7), (1,2) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
14T46, 21T38, 30T565, 35T31, 42T411, 42T412, 42T413, 42T418Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $(1,5)$ |
$ 5, 1, 1 $ | $504$ | $5$ | $(2,3,6,4,7)$ |
$ 5, 2 $ | $504$ | $10$ | $(1,5)(2,4,3,7,6)$ |
$ 2, 2, 1, 1, 1 $ | $105$ | $2$ | $(2,7)(3,5)$ |
$ 4, 2, 1 $ | $630$ | $4$ | $(1,6)(2,3,7,5)$ |
$ 2, 2, 2, 1 $ | $105$ | $2$ | $(1,6)(2,7)(3,5)$ |
$ 3, 1, 1, 1, 1 $ | $70$ | $3$ | $(2,4,7)$ |
$ 3, 2, 1, 1 $ | $420$ | $6$ | $(1,5)(2,7,4)$ |
$ 7 $ | $720$ | $7$ | $(1,3,6,2,7,5,4)$ |
$ 4, 1, 1, 1 $ | $210$ | $4$ | $(1,4,7,5)$ |
$ 3, 3, 1 $ | $280$ | $3$ | $(1,2,3)(5,6,7)$ |
$ 6, 1 $ | $840$ | $6$ | $(1,5,2,6,3,7)$ |
$ 3, 2, 2 $ | $210$ | $6$ | $(1,3)(2,7,4)(5,6)$ |
$ 4, 3 $ | $420$ | $12$ | $(1,6,3,5)(2,4,7)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $5040=2^{4} \cdot 3^{2} \cdot 5 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 5040.w | magma: IdentifyGroup(G);
|
Character table: |
2 4 1 4 1 4 3 4 3 3 2 3 1 1 2 . 3 2 . 1 . 1 . 1 2 1 1 1 2 1 1 . 5 1 1 1 1 . . . . . . . . . . . 7 1 . . . . . . . . . . . . . 1 1a 5a 2a 10a 2b 4a 2c 3a 6a 6b 4b 3b 6c 12a 7a 2P 1a 5a 1a 5a 1a 2b 1a 3a 3a 3a 2b 3b 3b 6a 7a 3P 1a 5a 2a 10a 2b 4a 2c 1a 2b 2a 4b 1a 2c 4b 7a 5P 1a 1a 2a 2a 2b 4a 2c 3a 6a 6b 4b 3b 6c 12a 7a 7P 1a 5a 2a 10a 2b 4a 2c 3a 6a 6b 4b 3b 6c 12a 1a X.1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 X.2 6 1 -4 1 2 . . 3 -1 -1 -2 . . 1 -1 X.3 14 -1 -6 -1 2 . -2 2 2 . . -1 1 . . X.4 14 -1 -4 1 2 . . -1 -1 -1 2 2 . -1 . X.5 15 . -5 . -1 -1 3 3 -1 1 -1 . . -1 1 X.6 35 . -5 . -1 1 -1 -1 -1 1 1 -1 -1 1 . X.7 21 1 -1 -1 1 -1 3 -3 1 -1 1 . . 1 . X.8 21 1 1 1 1 -1 -3 -3 1 1 -1 . . -1 . X.9 20 . . . -4 . . 2 2 . . 2 . . -1 X.10 35 . 5 . -1 1 1 -1 -1 -1 -1 -1 1 -1 . X.11 14 -1 4 -1 2 . . -1 -1 1 -2 2 . 1 . X.12 15 . 5 . -1 -1 -3 3 -1 -1 1 . . 1 1 X.13 14 -1 6 1 2 . 2 2 2 . . -1 -1 . . X.14 6 1 4 -1 2 . . 3 -1 1 2 . . -1 -1 X.15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
magma: CharacterTable(G);