Show commands:
Magma
magma: G := TransitiveGroup(7, 7);
Group action invariants
Degree $n$: | $7$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $7$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_7$ | ||
CHM label: | $S7$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5,6,7), (1,2) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
14T46, 21T38, 30T565, 35T31, 42T411, 42T412, 42T413, 42T418Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{7}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2,1^{5}$ | $21$ | $2$ | $1$ | $(1,2)$ |
2B | $2^{2},1^{3}$ | $105$ | $2$ | $2$ | $(1,2)(3,4)$ |
2C | $2^{3},1$ | $105$ | $2$ | $3$ | $(1,2)(3,4)(5,6)$ |
3A | $3,1^{4}$ | $70$ | $3$ | $2$ | $(1,2,3)$ |
3B | $3^{2},1$ | $280$ | $3$ | $4$ | $(1,2,3)(4,5,6)$ |
4A | $4,1^{3}$ | $210$ | $4$ | $3$ | $(1,2,3,4)$ |
4B | $4,2,1$ | $630$ | $4$ | $4$ | $(1,2,3,4)(5,6)$ |
5A | $5,1^{2}$ | $504$ | $5$ | $4$ | $(1,2,3,4,5)$ |
6A | $3,2^{2}$ | $210$ | $6$ | $4$ | $(1,2,3)(4,5)(6,7)$ |
6B | $3,2,1^{2}$ | $420$ | $6$ | $3$ | $(1,2,3)(4,5)$ |
6C | $6,1$ | $840$ | $6$ | $5$ | $(1,2,3,4,5,6)$ |
7A | $7$ | $720$ | $7$ | $6$ | $(1,2,3,4,5,6,7)$ |
10A | $5,2$ | $504$ | $10$ | $5$ | $(1,2,3,4,5)(6,7)$ |
12A | $4,3$ | $420$ | $12$ | $5$ | $(1,2,3,4)(5,6,7)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $5040=2^{4} \cdot 3^{2} \cdot 5 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 5040.w | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 5A | 6A | 6B | 6C | 7A | 10A | 12A | ||
Size | 1 | 21 | 105 | 105 | 70 | 280 | 210 | 630 | 504 | 210 | 420 | 840 | 720 | 504 | 420 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 2B | 2B | 5A | 3A | 3A | 3B | 7A | 5A | 6A | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 4A | 4B | 5A | 2B | 2A | 2C | 7A | 10A | 4A | |
5 P | 1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 1A | 6A | 6B | 6C | 7A | 2A | 12A | |
7 P | 1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 5A | 6A | 6B | 6C | 1A | 10A | 12A | |
Type |
magma: CharacterTable(G);