Normalized defining polynomial
\( x^{6} - 3x^{5} + 12x^{4} - 17x^{3} + 87x^{2} - 114x + 323 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-45001899\) \(\medspace = -\,3^{8}\cdot 19^{3}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(18.86\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{4/3}19^{1/2}\approx 18.859860385004858$ | ||
Ramified primes: | \(3\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-19}) \) | ||
$\card{ \Gal(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(171=3^{2}\cdot 19\) | ||
Dirichlet character group: | $\lbrace$$\chi_{171}(1,·)$, $\chi_{171}(115,·)$, $\chi_{171}(37,·)$, $\chi_{171}(151,·)$, $\chi_{171}(58,·)$, $\chi_{171}(94,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | \(\Q(\sqrt{-19}) \), 6.0.45001899.1$^{3}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{14977}a^{5}-\frac{5789}{14977}a^{4}+\frac{6594}{14977}a^{3}-\frac{6482}{14977}a^{2}+\frac{2531}{14977}a+\frac{178}{881}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{150}{14977}a^{5}+\frac{316}{14977}a^{4}+\frac{618}{14977}a^{3}+\frac{1205}{14977}a^{2}+\frac{5225}{14977}a+\frac{1151}{881}$, $\frac{132}{14977}a^{5}-\frac{321}{14977}a^{4}+\frac{1742}{14977}a^{3}-\frac{1935}{14977}a^{2}+\frac{4598}{14977}a-\frac{291}{881}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 3.39714980258 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 3.39714980258 \cdot 4}{2\cdot\sqrt{45001899}}\cr\approx \mathstrut & 0.251228484543 \end{aligned}\]
Galois group
A cyclic group of order 6 |
The 6 conjugacy class representatives for $C_6$ |
Character table for $C_6$ |
Intermediate fields
\(\Q(\sqrt{-19}) \), \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Twin sextic algebra: | \(\Q(\zeta_{9})^+\) $\times$ \(\Q(\sqrt{-19}) \) $\times$ \(\Q\) |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.6.0.1}{6} }$ | R | ${\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }$ | ${\href{/padicField/17.1.0.1}{1} }^{6}$ | R | ${\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.2.0.1}{2} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }$ | ${\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.6.8.3 | $x^{6} + 18 x^{5} + 114 x^{4} + 326 x^{3} + 570 x^{2} + 528 x + 197$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ |
\(19\) | 19.2.1.2 | $x^{2} + 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
19.2.1.2 | $x^{2} + 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.19.2t1.a.a | $1$ | $ 19 $ | \(\Q(\sqrt{-19}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.171.6t1.f.a | $1$ | $ 3^{2} \cdot 19 $ | 6.0.45001899.1 | $C_6$ (as 6T1) | $0$ | $-1$ |
* | 1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.171.6t1.f.b | $1$ | $ 3^{2} \cdot 19 $ | 6.0.45001899.1 | $C_6$ (as 6T1) | $0$ | $-1$ |