Properties

Label 1.171.6t1.f.b
Dimension $1$
Group $C_6$
Conductor $171$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(171\)\(\medspace = 3^{2} \cdot 19 \)
Artin field: Galois closure of 6.0.45001899.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Dirichlet character: \(\chi_{171}(94,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - 3x^{5} + 12x^{4} - 17x^{3} + 87x^{2} - 114x + 323 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: \( x^{2} + 33x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 20 a + 21 + \left(11 a + 25\right)\cdot 37 + \left(26 a + 31\right)\cdot 37^{2} + \left(3 a + 18\right)\cdot 37^{3} + \left(31 a + 3\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 17 a + 31 + \left(25 a + 32\right)\cdot 37 + \left(10 a + 3\right)\cdot 37^{2} + \left(33 a + 12\right)\cdot 37^{3} + \left(5 a + 1\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 20 a + 2 + \left(11 a + 21\right)\cdot 37 + \left(26 a + 28\right)\cdot 37^{2} + \left(3 a + 11\right)\cdot 37^{3} + \left(31 a + 27\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 17 a + 27 + \left(25 a + 14\right)\cdot 37 + \left(10 a + 14\right)\cdot 37^{2} + \left(33 a + 7\right)\cdot 37^{3} + \left(5 a + 13\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 20 a + 25 + \left(11 a + 6\right)\cdot 37 + \left(26 a + 21\right)\cdot 37^{2} + \left(3 a + 23\right)\cdot 37^{3} + \left(31 a + 28\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 17 a + 8 + \left(25 a + 10\right)\cdot 37 + \left(10 a + 11\right)\cdot 37^{2} + 33 a\cdot 37^{3} + 5 a\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,6,5,4,3,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,5)(3,6)$$-1$
$1$$3$$(1,5,3)(2,6,4)$$-\zeta_{3} - 1$
$1$$3$$(1,3,5)(2,4,6)$$\zeta_{3}$
$1$$6$$(1,6,5,4,3,2)$$-\zeta_{3}$
$1$$6$$(1,2,3,4,5,6)$$\zeta_{3} + 1$

The blue line marks the conjugacy class containing complex conjugation.