Normalized defining polynomial
\( x^{5} - 2x^{4} + 3x^{2} - 2x - 1 \)
Invariants
Degree: | $5$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 1]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-7367\) \(\medspace = -\,53\cdot 139\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(5.94\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $53^{1/2}139^{1/2}\approx 85.83122974768565$ | ||
Ramified primes: | \(53\), \(139\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-7367}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a^{3}-a^{2}-a+1$, $a-1$, $a$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 0.904106825927 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{1}\cdot 0.904106825927 \cdot 1}{2\cdot\sqrt{7367}}\cr\approx \mathstrut & 0.2647367743179 \end{aligned}\]
Galois group
A non-solvable group of order 120 |
The 7 conjugacy class representatives for $S_5$ |
Character table for $S_5$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 6 sibling: | 6.0.399826899863.1 |
Degree 10 siblings: | 10.4.399826899863.2, deg 10 |
Degree 12 sibling: | deg 12 |
Degree 15 sibling: | deg 15 |
Degree 20 siblings: | deg 20, deg 20, deg 20 |
Degree 24 sibling: | deg 24 |
Degree 30 siblings: | deg 30, deg 30, deg 30 |
Degree 40 sibling: | deg 40 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.5.0.1}{5} }$ | ${\href{/padicField/3.5.0.1}{5} }$ | ${\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.5.0.1}{5} }$ | ${\href{/padicField/13.5.0.1}{5} }$ | ${\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.5.0.1}{5} }$ | ${\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(53\) | $\Q_{53}$ | $x + 51$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
53.2.0.1 | $x^{2} + 49 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
53.2.1.1 | $x^{2} + 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(139\) | $\Q_{139}$ | $x + 137$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
139.2.1.2 | $x^{2} + 139$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
139.2.0.1 | $x^{2} + 138 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.7367.2t1.a.a | $1$ | $ 53 \cdot 139 $ | \(\Q(\sqrt{-7367}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
4.399826899863.10t12.a.a | $4$ | $ 53^{3} \cdot 139^{3}$ | 5.3.7367.1 | $S_5$ (as 5T5) | $1$ | $-2$ | |
* | 4.7367.5t5.a.a | $4$ | $ 53 \cdot 139 $ | 5.3.7367.1 | $S_5$ (as 5T5) | $1$ | $2$ |
5.54272689.10t13.a.a | $5$ | $ 53^{2} \cdot 139^{2}$ | 5.3.7367.1 | $S_5$ (as 5T5) | $1$ | $1$ | |
5.399826899863.6t14.a.a | $5$ | $ 53^{3} \cdot 139^{3}$ | 5.3.7367.1 | $S_5$ (as 5T5) | $1$ | $-1$ | |
6.399826899863.20t30.a.a | $6$ | $ 53^{3} \cdot 139^{3}$ | 5.3.7367.1 | $S_5$ (as 5T5) | $1$ | $0$ |