Show commands:
Magma
magma: G := TransitiveGroup(5, 5);
Group action invariants
Degree $n$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_5$ | ||
CHM label: | $S5$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2), (1,2,3,4,5) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{5}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2,1^{3}$ | $10$ | $2$ | $1$ | $(1,5)$ |
2B | $2^{2},1$ | $15$ | $2$ | $2$ | $(1,3)(2,5)$ |
3A | $3,1^{2}$ | $20$ | $3$ | $2$ | $(1,5,4)$ |
4A | $4,1$ | $30$ | $4$ | $3$ | $(1,5,3,2)$ |
5A | $5$ | $24$ | $5$ | $4$ | $(1,5,2,4,3)$ |
6A | $3,2$ | $20$ | $6$ | $3$ | $(1,5)(2,3,4)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 120.34 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A | 4A | 5A | 6A | ||
Size | 1 | 10 | 15 | 20 | 30 | 24 | 20 | |
2 P | 1A | 1A | 1A | 3A | 2B | 5A | 3A | |
3 P | 1A | 2A | 2B | 1A | 4A | 5A | 2A | |
5 P | 1A | 2A | 2B | 3A | 4A | 1A | 6A | |
Type | ||||||||
120.34.1a | R | |||||||
120.34.1b | R | |||||||
120.34.4a | R | |||||||
120.34.4b | R | |||||||
120.34.5a | R | |||||||
120.34.5b | R | |||||||
120.34.6a | R |
magma: CharacterTable(G);