Show commands: Magma
Group invariants
| Abstract group: | $S_5$ |
| |
| Order: | $120=2^{3} \cdot 3 \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $5$ |
| |
| Transitive number $t$: | $5$ |
| |
| CHM label: | $S5$ | ||
| Parity: | $-1$ |
| |
| Primitive: | yes |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,2)$, $(1,2,3,4,5)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{5}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2,1^{3}$ | $10$ | $2$ | $1$ | $(2,4)$ |
| 2B | $2^{2},1$ | $15$ | $2$ | $2$ | $(1,4)(3,5)$ |
| 3A | $3,1^{2}$ | $20$ | $3$ | $2$ | $(1,3,5)$ |
| 4A | $4,1$ | $30$ | $4$ | $3$ | $(1,3,4,5)$ |
| 5A | $5$ | $24$ | $5$ | $4$ | $(1,4,2,5,3)$ |
| 6A | $3,2$ | $20$ | $6$ | $3$ | $(1,5,3)(2,4)$ |
Character table
| 1A | 2A | 2B | 3A | 4A | 5A | 6A | ||
| Size | 1 | 10 | 15 | 20 | 30 | 24 | 20 | |
| 2 P | 1A | 1A | 1A | 3A | 2B | 5A | 3A | |
| 3 P | 1A | 2A | 2B | 1A | 4A | 5A | 2A | |
| 5 P | 1A | 2A | 2B | 3A | 4A | 1A | 6A | |
| Type | ||||||||
| 120.34.1a | R | |||||||
| 120.34.1b | R | |||||||
| 120.34.4a | R | |||||||
| 120.34.4b | R | |||||||
| 120.34.5a | R | |||||||
| 120.34.5b | R | |||||||
| 120.34.6a | R |
Regular extensions
| $f_{ 1 } =$ |
$x^{5}+s x^{3}+t x+t$
|
| The polynomial $f_{1}$ is generic for the base field $\Q$ |