Group action invariants
| Degree $n$ : | $5$ | |
| Transitive number $t$ : | $5$ | |
| Group : | $S_5$ | |
| CHM label : | $S5$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2), (1,2,3,4,5) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1 $ | $10$ | $2$ | $(4,5)$ |
| $ 3, 1, 1 $ | $20$ | $3$ | $(3,4,5)$ |
| $ 2, 2, 1 $ | $15$ | $2$ | $(2,3)(4,5)$ |
| $ 4, 1 $ | $30$ | $4$ | $(2,3,4,5)$ |
| $ 3, 2 $ | $20$ | $6$ | $(1,2)(3,4,5)$ |
| $ 5 $ | $24$ | $5$ | $(1,2,3,4,5)$ |
Group invariants
| Order: | $120=2^{3} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [120, 34] |
| Character table: |
2 3 2 1 3 2 1 .
3 1 1 1 . . 1 .
5 1 . . . . . 1
1a 2a 3a 2b 4a 6a 5a
2P 1a 1a 3a 1a 2b 3a 5a
3P 1a 2a 1a 2b 4a 2a 5a
5P 1a 2a 3a 2b 4a 6a 1a
X.1 1 -1 1 1 -1 -1 1
X.2 4 -2 1 . . 1 -1
X.3 5 -1 -1 1 1 -1 .
X.4 6 . . -2 . . 1
X.5 5 1 -1 1 -1 1 .
X.6 4 2 1 . . -1 -1
X.7 1 1 1 1 1 1 1
|