Show commands:
Magma
magma: G := TransitiveGroup(5, 5);
Group action invariants
Degree $n$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_5$ | ||
CHM label: | $S5$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2), (1,2,3,4,5) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 1, 1, 1 $ | $10$ | $2$ | $(4,5)$ |
$ 3, 1, 1 $ | $20$ | $3$ | $(3,4,5)$ |
$ 2, 2, 1 $ | $15$ | $2$ | $(2,3)(4,5)$ |
$ 4, 1 $ | $30$ | $4$ | $(2,3,4,5)$ |
$ 3, 2 $ | $20$ | $6$ | $(1,2)(3,4,5)$ |
$ 5 $ | $24$ | $5$ | $(1,2,3,4,5)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 120.34 | magma: IdentifyGroup(G);
|
Character table: |
2 3 2 1 3 2 1 . 3 1 1 1 . . 1 . 5 1 . . . . . 1 1a 2a 3a 2b 4a 6a 5a 2P 1a 1a 3a 1a 2b 3a 5a 3P 1a 2a 1a 2b 4a 2a 5a 5P 1a 2a 3a 2b 4a 6a 1a X.1 1 -1 1 1 -1 -1 1 X.2 4 -2 1 . . 1 -1 X.3 5 -1 -1 1 1 -1 . X.4 6 . . -2 . . 1 X.5 5 1 -1 1 -1 1 . X.6 4 2 1 . . -1 -1 X.7 1 1 1 1 1 1 1 |
magma: CharacterTable(G);