Properties

Label 5T5
5T5 1 2 1->2 1->2 3 2->3 4 3->4 5 4->5 5->1
Degree $5$
Order $120$
Cyclic no
Abelian no
Solvable no
Primitive yes
$p$-group no
Group: $S_5$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(5, 5);
 

Group invariants

Abstract group:  $S_5$
Copy content magma:IdentifyGroup(G);
 
Order:  $120=2^{3} \cdot 3 \cdot 5$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  no
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $5$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $5$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $S5$
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  yes
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2)$, $(1,2,3,4,5)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{5}$ $1$ $1$ $0$ $()$
2A $2,1^{3}$ $10$ $2$ $1$ $(2,4)$
2B $2^{2},1$ $15$ $2$ $2$ $(1,4)(3,5)$
3A $3,1^{2}$ $20$ $3$ $2$ $(1,3,5)$
4A $4,1$ $30$ $4$ $3$ $(1,3,4,5)$
5A $5$ $24$ $5$ $4$ $(1,4,2,5,3)$
6A $3,2$ $20$ $6$ $3$ $(1,5,3)(2,4)$

Malle's constant $a(G)$:     $1$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 3A 4A 5A 6A
Size 1 10 15 20 30 24 20
2 P 1A 1A 1A 3A 2B 5A 3A
3 P 1A 2A 2B 1A 4A 5A 2A
5 P 1A 2A 2B 3A 4A 1A 6A
Type
120.34.1a R 1 1 1 1 1 1 1
120.34.1b R 1 1 1 1 1 1 1
120.34.4a R 4 2 0 1 0 1 1
120.34.4b R 4 2 0 1 0 1 1
120.34.5a R 5 1 1 1 1 0 1
120.34.5b R 5 1 1 1 1 0 1
120.34.6a R 6 0 2 0 0 1 0

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $x^{5}+s x^{3}+t x+t$ Copy content Toggle raw display
The polynomial $f_{1}$ is generic for the base field $\Q$