Properties

Label 53.2.1.1
Base \(\Q_{53}\)
Degree \(2\)
e \(2\)
f \(1\)
c \(1\)
Galois group $C_2$ (as 2T1)

Related objects

Learn more

Defining polynomial

\(x^{2} - 53\)  Toggle raw display

Invariants

Base field: $\Q_{53}$
Degree $d$: $2$
Ramification exponent $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $1$
Discriminant root field: $\Q_{53}(\sqrt{53})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 53 }) }$: $2$
This field is Galois and abelian over $\Q_{53}.$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 53 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{53}$
Relative Eisenstein polynomial:\( x^{2} - 53 \)  Toggle raw display

Invariants of the Galois closure

Galois group:$C_2$ (as 2T1)
Inertia group:$C_2$
Wild inertia group:$C_1$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{2} - 4 x - 49$  Toggle raw display