Properties

Label 29.1.405...864.1
Degree $29$
Signature $[1, 14]$
Discriminant $4.054\times 10^{73}$
Root discriminant \(345.31\)
Ramified primes $2,13,59$
Class number $29$ (GRH)
Class group [29] (GRH)
Galois group $D_{29}$ (as 29T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^29 - x^28 + 31*x^27 + 27*x^26 + 941*x^25 - 20031*x^24 - 30389*x^23 + 210983*x^22 + 9367867*x^21 + 18647003*x^20 - 51060099*x^19 - 979663711*x^18 - 741336241*x^17 - 32098060789*x^16 - 156910730311*x^15 - 132756022611*x^14 + 3952184725432*x^13 + 11271711723834*x^12 + 18506440529168*x^11 + 126537953479264*x^10 + 337098581593616*x^9 + 1206843794414080*x^8 - 3657629942420016*x^7 + 5329245181928848*x^6 - 10623419127753216*x^5 + 13803511669571360*x^4 - 12576643486615680*x^3 + 8274398085859968*x^2 - 2058625455644160*x + 214348548989952)
 
gp: K = bnfinit(y^29 - y^28 + 31*y^27 + 27*y^26 + 941*y^25 - 20031*y^24 - 30389*y^23 + 210983*y^22 + 9367867*y^21 + 18647003*y^20 - 51060099*y^19 - 979663711*y^18 - 741336241*y^17 - 32098060789*y^16 - 156910730311*y^15 - 132756022611*y^14 + 3952184725432*y^13 + 11271711723834*y^12 + 18506440529168*y^11 + 126537953479264*y^10 + 337098581593616*y^9 + 1206843794414080*y^8 - 3657629942420016*y^7 + 5329245181928848*y^6 - 10623419127753216*y^5 + 13803511669571360*y^4 - 12576643486615680*y^3 + 8274398085859968*y^2 - 2058625455644160*y + 214348548989952, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^29 - x^28 + 31*x^27 + 27*x^26 + 941*x^25 - 20031*x^24 - 30389*x^23 + 210983*x^22 + 9367867*x^21 + 18647003*x^20 - 51060099*x^19 - 979663711*x^18 - 741336241*x^17 - 32098060789*x^16 - 156910730311*x^15 - 132756022611*x^14 + 3952184725432*x^13 + 11271711723834*x^12 + 18506440529168*x^11 + 126537953479264*x^10 + 337098581593616*x^9 + 1206843794414080*x^8 - 3657629942420016*x^7 + 5329245181928848*x^6 - 10623419127753216*x^5 + 13803511669571360*x^4 - 12576643486615680*x^3 + 8274398085859968*x^2 - 2058625455644160*x + 214348548989952);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^29 - x^28 + 31*x^27 + 27*x^26 + 941*x^25 - 20031*x^24 - 30389*x^23 + 210983*x^22 + 9367867*x^21 + 18647003*x^20 - 51060099*x^19 - 979663711*x^18 - 741336241*x^17 - 32098060789*x^16 - 156910730311*x^15 - 132756022611*x^14 + 3952184725432*x^13 + 11271711723834*x^12 + 18506440529168*x^11 + 126537953479264*x^10 + 337098581593616*x^9 + 1206843794414080*x^8 - 3657629942420016*x^7 + 5329245181928848*x^6 - 10623419127753216*x^5 + 13803511669571360*x^4 - 12576643486615680*x^3 + 8274398085859968*x^2 - 2058625455644160*x + 214348548989952)
 

\( x^{29} - x^{28} + 31 x^{27} + 27 x^{26} + 941 x^{25} - 20031 x^{24} - 30389 x^{23} + \cdots + 214348548989952 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $29$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 14]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(40541810269184654077554223987906200211370142702911343138677412109288996864\) \(\medspace = 2^{28}\cdot 13^{14}\cdot 59^{28}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(345.31\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 13^{1/2}59^{28/29}\approx 369.64924286453424$
Ramified primes:   \(2\), \(13\), \(59\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{7}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{8}-\frac{1}{4}a^{5}+\frac{1}{8}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}$, $\frac{1}{24}a^{9}+\frac{1}{8}a^{5}-\frac{1}{6}a$, $\frac{1}{48}a^{10}-\frac{1}{48}a^{9}-\frac{1}{8}a^{7}+\frac{1}{16}a^{6}-\frac{1}{16}a^{5}-\frac{1}{4}a^{4}-\frac{1}{8}a^{3}+\frac{1}{6}a^{2}+\frac{1}{3}a$, $\frac{1}{48}a^{11}-\frac{1}{48}a^{9}-\frac{1}{16}a^{7}-\frac{1}{16}a^{5}-\frac{1}{4}a^{4}+\frac{7}{24}a^{3}-\frac{1}{4}a^{2}+\frac{1}{3}a$, $\frac{1}{48}a^{12}-\frac{1}{48}a^{9}-\frac{1}{16}a^{8}-\frac{1}{8}a^{7}+\frac{3}{16}a^{5}+\frac{1}{24}a^{4}+\frac{1}{8}a^{3}-\frac{1}{2}a^{2}+\frac{1}{3}a$, $\frac{1}{96}a^{13}-\frac{1}{96}a^{12}-\frac{1}{96}a^{11}-\frac{1}{96}a^{10}-\frac{1}{96}a^{9}+\frac{1}{32}a^{8}+\frac{3}{32}a^{7}+\frac{3}{32}a^{6}+\frac{1}{12}a^{5}+\frac{11}{48}a^{4}+\frac{1}{6}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{96}a^{14}-\frac{1}{16}a^{8}-\frac{1}{8}a^{7}-\frac{1}{96}a^{6}+\frac{1}{16}a^{4}+\frac{1}{8}a^{3}$, $\frac{1}{96}a^{15}-\frac{1}{48}a^{9}-\frac{1}{96}a^{7}-\frac{1}{16}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{6}a$, $\frac{1}{1152}a^{16}-\frac{1}{288}a^{15}-\frac{1}{288}a^{14}+\frac{1}{576}a^{12}-\frac{1}{144}a^{11}-\frac{1}{144}a^{10}+\frac{41}{1152}a^{8}-\frac{17}{288}a^{7}+\frac{7}{288}a^{6}-\frac{1}{12}a^{5}-\frac{11}{288}a^{4}-\frac{13}{72}a^{3}+\frac{35}{72}a^{2}-\frac{1}{6}a$, $\frac{1}{11520}a^{17}+\frac{1}{11520}a^{16}-\frac{1}{192}a^{15}+\frac{1}{2880}a^{14}-\frac{11}{5760}a^{13}-\frac{7}{1152}a^{12}-\frac{1}{160}a^{11}-\frac{1}{180}a^{10}-\frac{199}{11520}a^{9}-\frac{223}{11520}a^{8}-\frac{29}{960}a^{7}-\frac{229}{2880}a^{6}+\frac{83}{576}a^{5}-\frac{719}{2880}a^{4}-\frac{13}{30}a^{3}-\frac{49}{144}a^{2}-\frac{1}{20}a+\frac{1}{10}$, $\frac{1}{149760}a^{18}+\frac{1}{37440}a^{17}+\frac{23}{149760}a^{16}+\frac{11}{2340}a^{15}+\frac{25}{4992}a^{14}+\frac{29}{9360}a^{13}-\frac{121}{74880}a^{12}-\frac{19}{1872}a^{11}+\frac{529}{149760}a^{10}-\frac{59}{7488}a^{9}+\frac{3343}{149760}a^{8}-\frac{37}{468}a^{7}-\frac{9}{80}a^{6}+\frac{1793}{18720}a^{5}+\frac{967}{7488}a^{4}+\frac{3599}{9360}a^{3}-\frac{431}{9360}a^{2}-\frac{383}{780}a+\frac{1}{10}$, $\frac{1}{299520}a^{19}-\frac{1}{299520}a^{18}+\frac{1}{99840}a^{17}+\frac{23}{99840}a^{16}+\frac{29}{9984}a^{15}-\frac{67}{16640}a^{14}+\frac{31}{16640}a^{13}-\frac{15}{3328}a^{12}+\frac{2929}{299520}a^{11}+\frac{67}{59904}a^{10}-\frac{83}{7680}a^{9}-\frac{829}{19968}a^{8}-\frac{1117}{12480}a^{7}-\frac{393}{4160}a^{6}+\frac{177}{1664}a^{5}-\frac{1491}{8320}a^{4}+\frac{2357}{9360}a^{3}+\frac{5099}{18720}a^{2}+\frac{43}{1560}a-\frac{1}{4}$, $\frac{1}{299520}a^{20}+\frac{1}{24960}a^{17}+\frac{61}{299520}a^{16}+\frac{43}{9360}a^{15}+\frac{191}{74880}a^{14}-\frac{1}{520}a^{13}-\frac{233}{33280}a^{12}-\frac{19}{2340}a^{11}-\frac{79}{37440}a^{10}-\frac{19}{1920}a^{9}-\frac{781}{23040}a^{8}+\frac{1507}{18720}a^{7}-\frac{7637}{74880}a^{6}+\frac{539}{12480}a^{5}+\frac{2107}{14976}a^{4}+\frac{7919}{18720}a^{3}-\frac{6523}{18720}a^{2}+\frac{115}{312}a+\frac{9}{20}$, $\frac{1}{599040}a^{21}-\frac{1}{599040}a^{20}-\frac{1}{599040}a^{19}-\frac{1}{599040}a^{18}+\frac{1}{37440}a^{17}-\frac{1}{6656}a^{16}-\frac{1249}{299520}a^{15}-\frac{1}{4608}a^{14}-\frac{323}{66560}a^{13}+\frac{503}{599040}a^{12}+\frac{1639}{599040}a^{11}-\frac{1139}{199680}a^{10}+\frac{3697}{299520}a^{9}-\frac{185}{9984}a^{8}+\frac{307}{29952}a^{7}-\frac{12761}{149760}a^{6}-\frac{17699}{74880}a^{5}+\frac{401}{9360}a^{4}+\frac{101}{6240}a^{3}+\frac{1087}{9360}a^{2}-\frac{29}{65}a+\frac{1}{10}$, $\frac{1}{2396160}a^{22}-\frac{1}{1198080}a^{19}+\frac{1}{798720}a^{18}+\frac{1}{399360}a^{17}+\frac{167}{399360}a^{16}-\frac{289}{66560}a^{15}+\frac{6547}{2396160}a^{14}+\frac{89}{199680}a^{13}+\frac{1111}{199680}a^{12}-\frac{5}{239616}a^{11}-\frac{219}{266240}a^{10}+\frac{709}{79872}a^{9}+\frac{10111}{399360}a^{8}+\frac{3019}{33280}a^{7}-\frac{5677}{119808}a^{6}+\frac{1793}{7680}a^{5}+\frac{6859}{99840}a^{4}+\frac{17359}{37440}a^{3}+\frac{539}{4992}a^{2}-\frac{661}{2080}a+\frac{9}{80}$, $\frac{1}{28753920}a^{23}+\frac{1}{28753920}a^{22}+\frac{1}{3594240}a^{21}+\frac{19}{14376960}a^{20}+\frac{17}{28753920}a^{19}-\frac{71}{28753920}a^{18}-\frac{7}{718848}a^{17}+\frac{4063}{14376960}a^{16}+\frac{5027}{5750784}a^{15}+\frac{277}{147456}a^{14}+\frac{1213}{239616}a^{13}+\frac{34991}{4792320}a^{12}-\frac{42065}{5750784}a^{11}-\frac{218797}{28753920}a^{10}-\frac{74773}{3594240}a^{9}-\frac{802099}{14376960}a^{8}+\frac{14077}{7188480}a^{7}+\frac{669653}{7188480}a^{6}+\frac{67901}{898560}a^{5}+\frac{892109}{3594240}a^{4}-\frac{122333}{898560}a^{3}-\frac{28993}{299520}a^{2}+\frac{8569}{24960}a-\frac{21}{64}$, $\frac{1}{28753920}a^{24}-\frac{1}{5750784}a^{22}-\frac{1}{1597440}a^{21}+\frac{1}{1064960}a^{20}-\frac{1}{1797120}a^{19}-\frac{1}{5750784}a^{18}+\frac{47}{1597440}a^{17}+\frac{6233}{28753920}a^{16}-\frac{253}{179712}a^{15}+\frac{44423}{9584640}a^{14}+\frac{4847}{958464}a^{13}+\frac{172817}{28753920}a^{12}-\frac{2891}{599040}a^{11}+\frac{89561}{28753920}a^{10}+\frac{90991}{4792320}a^{9}-\frac{3059}{122880}a^{8}-\frac{6919}{56160}a^{7}+\frac{609551}{7188480}a^{6}+\frac{81703}{1198080}a^{5}-\frac{797773}{3594240}a^{4}-\frac{152447}{449280}a^{3}-\frac{23515}{59904}a^{2}-\frac{6203}{24960}a-\frac{27}{320}$, $\frac{1}{431308800}a^{25}-\frac{1}{215654400}a^{23}+\frac{7}{143769600}a^{22}+\frac{49}{143769600}a^{21}-\frac{287}{215654400}a^{20}-\frac{1}{16588800}a^{19}+\frac{5}{1916928}a^{18}-\frac{12151}{431308800}a^{17}-\frac{1891}{43130880}a^{16}+\frac{46247}{14376960}a^{15}+\frac{105107}{47923200}a^{14}-\frac{1644247}{431308800}a^{13}-\frac{7651}{1105920}a^{12}+\frac{1048969}{215654400}a^{11}-\frac{1014451}{143769600}a^{10}+\frac{1442107}{71884800}a^{9}-\frac{11238421}{215654400}a^{8}-\frac{3951137}{53913600}a^{7}+\frac{186749}{11980800}a^{6}-\frac{8153317}{53913600}a^{5}+\frac{2308931}{53913600}a^{4}-\frac{6109}{14976}a^{3}+\frac{78781}{499200}a^{2}+\frac{8069}{41600}a-\frac{501}{1600}$, $\frac{1}{67284172800}a^{26}+\frac{7}{16821043200}a^{25}+\frac{463}{67284172800}a^{24}+\frac{7}{1682104320}a^{23}+\frac{743}{4485611520}a^{22}+\frac{6263}{16821043200}a^{21}+\frac{9049}{22428057600}a^{20}-\frac{1189}{2102630400}a^{19}-\frac{11281}{67284172800}a^{18}-\frac{90977}{16821043200}a^{17}+\frac{32333}{2691366912}a^{16}+\frac{1282043}{311500800}a^{15}+\frac{151560467}{67284172800}a^{14}+\frac{84936041}{16821043200}a^{13}+\frac{104658473}{67284172800}a^{12}+\frac{13566731}{4205260800}a^{11}-\frac{3381217}{431308800}a^{10}+\frac{65998073}{8410521600}a^{9}-\frac{146750233}{2803507200}a^{8}+\frac{434981021}{4205260800}a^{7}+\frac{349261981}{4205260800}a^{6}+\frac{89250533}{420526080}a^{5}+\frac{377631469}{4205260800}a^{4}+\frac{6787619}{26956800}a^{3}+\frac{10204633}{38937600}a^{2}-\frac{21019}{57600}a+\frac{4747}{9600}$, $\frac{1}{860699138457600}a^{27}-\frac{641}{286899712819200}a^{26}-\frac{13891}{31877745868800}a^{25}+\frac{753503}{95633237606400}a^{24}+\frac{13170869}{860699138457600}a^{23}+\frac{23719009}{172139827691520}a^{22}+\frac{102561331}{860699138457600}a^{21}-\frac{95557289}{66207626035200}a^{20}+\frac{48355663}{66207626035200}a^{19}-\frac{2080573237}{860699138457600}a^{18}+\frac{6676570721}{172139827691520}a^{17}+\frac{263669192653}{860699138457600}a^{16}+\frac{748367872199}{860699138457600}a^{15}-\frac{19991125391}{22069208678400}a^{14}-\frac{332242745303}{95633237606400}a^{13}+\frac{1263039807091}{286899712819200}a^{12}-\frac{338764231139}{53793696153600}a^{11}+\frac{2118096106603}{215174784614400}a^{10}+\frac{391806835643}{21517478461440}a^{9}-\frac{6139126512071}{107587392307200}a^{8}-\frac{417427943053}{53793696153600}a^{7}+\frac{5269293053491}{53793696153600}a^{6}+\frac{3200506470101}{53793696153600}a^{5}+\frac{6659186520629}{53793696153600}a^{4}-\frac{69130865093}{448280801280}a^{3}-\frac{50347892581}{166029926400}a^{2}-\frac{4739141}{9578649600}a-\frac{10976813}{24560640}$, $\frac{1}{15\!\cdots\!00}a^{28}-\frac{14\!\cdots\!29}{30\!\cdots\!20}a^{27}+\frac{18\!\cdots\!27}{10\!\cdots\!00}a^{26}-\frac{24\!\cdots\!73}{50\!\cdots\!00}a^{25}-\frac{82\!\cdots\!29}{15\!\cdots\!00}a^{24}-\frac{23\!\cdots\!81}{15\!\cdots\!00}a^{23}-\frac{19\!\cdots\!13}{10\!\cdots\!40}a^{22}+\frac{86\!\cdots\!13}{15\!\cdots\!00}a^{21}+\frac{17\!\cdots\!17}{11\!\cdots\!00}a^{20}-\frac{81\!\cdots\!17}{11\!\cdots\!60}a^{19}+\frac{90\!\cdots\!69}{50\!\cdots\!00}a^{18}-\frac{64\!\cdots\!77}{15\!\cdots\!00}a^{17}+\frac{17\!\cdots\!77}{16\!\cdots\!00}a^{16}+\frac{60\!\cdots\!89}{15\!\cdots\!00}a^{15}-\frac{67\!\cdots\!57}{16\!\cdots\!00}a^{14}-\frac{14\!\cdots\!17}{16\!\cdots\!00}a^{13}-\frac{58\!\cdots\!37}{75\!\cdots\!00}a^{12}+\frac{63\!\cdots\!91}{37\!\cdots\!00}a^{11}-\frac{84\!\cdots\!11}{21\!\cdots\!28}a^{10}+\frac{19\!\cdots\!71}{18\!\cdots\!00}a^{9}+\frac{38\!\cdots\!29}{12\!\cdots\!00}a^{8}+\frac{65\!\cdots\!83}{63\!\cdots\!40}a^{7}-\frac{10\!\cdots\!77}{10\!\cdots\!00}a^{6}-\frac{16\!\cdots\!81}{25\!\cdots\!00}a^{5}+\frac{83\!\cdots\!31}{47\!\cdots\!00}a^{4}+\frac{29\!\cdots\!37}{78\!\cdots\!00}a^{3}+\frac{61\!\cdots\!81}{43\!\cdots\!00}a^{2}-\frac{11\!\cdots\!01}{42\!\cdots\!00}a-\frac{22\!\cdots\!47}{43\!\cdots\!24}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $3$, $5$, $13$

Class group and class number

$C_{29}$, which has order $29$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{43\!\cdots\!09}{25\!\cdots\!00}a^{28}-\frac{19\!\cdots\!81}{14\!\cdots\!00}a^{27}+\frac{30\!\cdots\!37}{56\!\cdots\!00}a^{26}+\frac{24\!\cdots\!53}{42\!\cdots\!00}a^{25}+\frac{10\!\cdots\!87}{63\!\cdots\!00}a^{24}-\frac{43\!\cdots\!11}{12\!\cdots\!00}a^{23}-\frac{18\!\cdots\!39}{31\!\cdots\!00}a^{22}+\frac{90\!\cdots\!47}{25\!\cdots\!60}a^{21}+\frac{15\!\cdots\!63}{97\!\cdots\!00}a^{20}+\frac{89\!\cdots\!83}{25\!\cdots\!60}a^{19}-\frac{66\!\cdots\!73}{78\!\cdots\!00}a^{18}-\frac{21\!\cdots\!23}{12\!\cdots\!00}a^{17}-\frac{10\!\cdots\!43}{63\!\cdots\!00}a^{16}-\frac{23\!\cdots\!51}{42\!\cdots\!00}a^{15}-\frac{29\!\cdots\!39}{10\!\cdots\!00}a^{14}-\frac{43\!\cdots\!11}{15\!\cdots\!00}a^{13}+\frac{69\!\cdots\!97}{10\!\cdots\!44}a^{12}+\frac{13\!\cdots\!23}{63\!\cdots\!00}a^{11}+\frac{44\!\cdots\!41}{12\!\cdots\!80}a^{10}+\frac{11\!\cdots\!69}{49\!\cdots\!00}a^{9}+\frac{53\!\cdots\!87}{85\!\cdots\!00}a^{8}+\frac{17\!\cdots\!03}{78\!\cdots\!00}a^{7}-\frac{59\!\cdots\!63}{98\!\cdots\!00}a^{6}+\frac{16\!\cdots\!69}{21\!\cdots\!00}a^{5}-\frac{19\!\cdots\!29}{11\!\cdots\!60}a^{4}+\frac{67\!\cdots\!97}{33\!\cdots\!00}a^{3}-\frac{58\!\cdots\!99}{35\!\cdots\!00}a^{2}+\frac{92\!\cdots\!31}{93\!\cdots\!00}a-\frac{47\!\cdots\!51}{11\!\cdots\!00}$, $\frac{75\!\cdots\!79}{37\!\cdots\!04}a^{28}+\frac{45\!\cdots\!65}{15\!\cdots\!16}a^{27}+\frac{21\!\cdots\!11}{34\!\cdots\!00}a^{26}+\frac{12\!\cdots\!29}{97\!\cdots\!00}a^{25}+\frac{77\!\cdots\!63}{37\!\cdots\!00}a^{24}-\frac{14\!\cdots\!11}{37\!\cdots\!00}a^{23}-\frac{12\!\cdots\!09}{12\!\cdots\!00}a^{22}+\frac{10\!\cdots\!63}{37\!\cdots\!00}a^{21}+\frac{53\!\cdots\!15}{28\!\cdots\!52}a^{20}+\frac{74\!\cdots\!33}{12\!\cdots\!00}a^{19}-\frac{30\!\cdots\!07}{12\!\cdots\!00}a^{18}-\frac{73\!\cdots\!51}{37\!\cdots\!00}a^{17}-\frac{94\!\cdots\!29}{25\!\cdots\!60}a^{16}-\frac{26\!\cdots\!97}{37\!\cdots\!00}a^{15}-\frac{54\!\cdots\!27}{14\!\cdots\!00}a^{14}-\frac{31\!\cdots\!43}{42\!\cdots\!00}a^{13}+\frac{25\!\cdots\!93}{37\!\cdots\!00}a^{12}+\frac{14\!\cdots\!27}{47\!\cdots\!80}a^{11}+\frac{23\!\cdots\!97}{31\!\cdots\!00}a^{10}+\frac{66\!\cdots\!47}{18\!\cdots\!52}a^{9}+\frac{14\!\cdots\!37}{12\!\cdots\!00}a^{8}+\frac{29\!\cdots\!81}{78\!\cdots\!00}a^{7}-\frac{19\!\cdots\!19}{78\!\cdots\!00}a^{6}+\frac{58\!\cdots\!61}{63\!\cdots\!00}a^{5}-\frac{30\!\cdots\!47}{23\!\cdots\!00}a^{4}+\frac{15\!\cdots\!41}{98\!\cdots\!00}a^{3}-\frac{31\!\cdots\!23}{21\!\cdots\!00}a^{2}+\frac{29\!\cdots\!59}{42\!\cdots\!00}a-\frac{14\!\cdots\!61}{53\!\cdots\!00}$, $\frac{52\!\cdots\!81}{37\!\cdots\!00}a^{28}-\frac{50\!\cdots\!01}{37\!\cdots\!00}a^{27}+\frac{14\!\cdots\!03}{34\!\cdots\!00}a^{26}+\frac{49\!\cdots\!99}{12\!\cdots\!00}a^{25}+\frac{49\!\cdots\!11}{37\!\cdots\!00}a^{24}-\frac{10\!\cdots\!49}{37\!\cdots\!00}a^{23}-\frac{54\!\cdots\!81}{12\!\cdots\!00}a^{22}+\frac{11\!\cdots\!09}{37\!\cdots\!00}a^{21}+\frac{37\!\cdots\!61}{29\!\cdots\!00}a^{20}+\frac{12\!\cdots\!17}{46\!\cdots\!00}a^{19}-\frac{17\!\cdots\!79}{25\!\cdots\!60}a^{18}-\frac{51\!\cdots\!01}{37\!\cdots\!00}a^{17}-\frac{90\!\cdots\!39}{84\!\cdots\!20}a^{16}-\frac{16\!\cdots\!63}{37\!\cdots\!00}a^{15}-\frac{68\!\cdots\!03}{31\!\cdots\!60}a^{14}-\frac{26\!\cdots\!87}{14\!\cdots\!00}a^{13}+\frac{20\!\cdots\!67}{37\!\cdots\!40}a^{12}+\frac{14\!\cdots\!27}{94\!\cdots\!00}a^{11}+\frac{85\!\cdots\!87}{32\!\cdots\!00}a^{10}+\frac{83\!\cdots\!71}{47\!\cdots\!00}a^{9}+\frac{15\!\cdots\!03}{31\!\cdots\!00}a^{8}+\frac{26\!\cdots\!07}{15\!\cdots\!60}a^{7}-\frac{13\!\cdots\!73}{26\!\cdots\!00}a^{6}+\frac{91\!\cdots\!67}{12\!\cdots\!40}a^{5}-\frac{33\!\cdots\!09}{23\!\cdots\!40}a^{4}+\frac{17\!\cdots\!49}{96\!\cdots\!40}a^{3}-\frac{17\!\cdots\!11}{10\!\cdots\!00}a^{2}+\frac{10\!\cdots\!27}{10\!\cdots\!00}a-\frac{55\!\cdots\!47}{26\!\cdots\!00}$, $\frac{40\!\cdots\!57}{84\!\cdots\!00}a^{28}-\frac{47\!\cdots\!37}{70\!\cdots\!00}a^{27}+\frac{20\!\cdots\!21}{11\!\cdots\!00}a^{26}+\frac{44\!\cdots\!21}{52\!\cdots\!00}a^{25}+\frac{17\!\cdots\!19}{32\!\cdots\!00}a^{24}-\frac{20\!\cdots\!59}{21\!\cdots\!80}a^{23}-\frac{32\!\cdots\!57}{42\!\cdots\!00}a^{22}+\frac{80\!\cdots\!21}{13\!\cdots\!00}a^{21}+\frac{17\!\cdots\!77}{40\!\cdots\!00}a^{20}+\frac{38\!\cdots\!33}{52\!\cdots\!00}a^{19}-\frac{15\!\cdots\!99}{42\!\cdots\!00}a^{18}-\frac{80\!\cdots\!33}{21\!\cdots\!40}a^{17}-\frac{21\!\cdots\!61}{14\!\cdots\!00}a^{16}-\frac{20\!\cdots\!69}{11\!\cdots\!00}a^{15}-\frac{31\!\cdots\!91}{42\!\cdots\!00}a^{14}-\frac{32\!\cdots\!07}{26\!\cdots\!60}a^{13}+\frac{17\!\cdots\!39}{12\!\cdots\!80}a^{12}+\frac{54\!\cdots\!91}{16\!\cdots\!00}a^{11}+\frac{31\!\cdots\!71}{21\!\cdots\!00}a^{10}+\frac{53\!\cdots\!53}{52\!\cdots\!00}a^{9}+\frac{55\!\cdots\!89}{21\!\cdots\!00}a^{8}+\frac{66\!\cdots\!97}{65\!\cdots\!00}a^{7}-\frac{97\!\cdots\!03}{26\!\cdots\!00}a^{6}+\frac{17\!\cdots\!49}{19\!\cdots\!00}a^{5}-\frac{37\!\cdots\!49}{52\!\cdots\!00}a^{4}+\frac{75\!\cdots\!59}{43\!\cdots\!00}a^{3}-\frac{10\!\cdots\!61}{48\!\cdots\!00}a^{2}+\frac{14\!\cdots\!03}{93\!\cdots\!00}a-\frac{13\!\cdots\!31}{11\!\cdots\!00}$, $\frac{56\!\cdots\!27}{37\!\cdots\!00}a^{28}+\frac{33\!\cdots\!11}{75\!\cdots\!80}a^{27}+\frac{15\!\cdots\!39}{34\!\cdots\!00}a^{26}+\frac{12\!\cdots\!47}{12\!\cdots\!00}a^{25}+\frac{57\!\cdots\!23}{37\!\cdots\!00}a^{24}-\frac{10\!\cdots\!93}{37\!\cdots\!00}a^{23}-\frac{33\!\cdots\!63}{42\!\cdots\!00}a^{22}+\frac{77\!\cdots\!41}{37\!\cdots\!00}a^{21}+\frac{41\!\cdots\!73}{29\!\cdots\!00}a^{20}+\frac{58\!\cdots\!07}{12\!\cdots\!00}a^{19}-\frac{61\!\cdots\!57}{42\!\cdots\!00}a^{18}-\frac{55\!\cdots\!93}{37\!\cdots\!00}a^{17}-\frac{37\!\cdots\!73}{12\!\cdots\!00}a^{16}-\frac{19\!\cdots\!71}{37\!\cdots\!00}a^{15}-\frac{13\!\cdots\!33}{46\!\cdots\!00}a^{14}-\frac{24\!\cdots\!61}{42\!\cdots\!00}a^{13}+\frac{23\!\cdots\!31}{47\!\cdots\!00}a^{12}+\frac{21\!\cdots\!41}{94\!\cdots\!00}a^{11}+\frac{91\!\cdots\!03}{15\!\cdots\!00}a^{10}+\frac{25\!\cdots\!47}{94\!\cdots\!60}a^{9}+\frac{54\!\cdots\!81}{63\!\cdots\!00}a^{8}+\frac{76\!\cdots\!01}{26\!\cdots\!00}a^{7}-\frac{12\!\cdots\!39}{78\!\cdots\!00}a^{6}+\frac{37\!\cdots\!19}{63\!\cdots\!00}a^{5}-\frac{31\!\cdots\!31}{36\!\cdots\!00}a^{4}+\frac{17\!\cdots\!63}{19\!\cdots\!00}a^{3}-\frac{40\!\cdots\!49}{54\!\cdots\!00}a^{2}+\frac{41\!\cdots\!87}{21\!\cdots\!00}a-\frac{14\!\cdots\!93}{67\!\cdots\!00}$, $\frac{16\!\cdots\!33}{75\!\cdots\!00}a^{28}-\frac{54\!\cdots\!07}{37\!\cdots\!00}a^{27}+\frac{10\!\cdots\!01}{16\!\cdots\!00}a^{26}+\frac{11\!\cdots\!11}{12\!\cdots\!00}a^{25}+\frac{19\!\cdots\!21}{94\!\cdots\!00}a^{24}-\frac{16\!\cdots\!89}{37\!\cdots\!00}a^{23}-\frac{17\!\cdots\!53}{21\!\cdots\!00}a^{22}+\frac{17\!\cdots\!93}{37\!\cdots\!00}a^{21}+\frac{11\!\cdots\!93}{58\!\cdots\!60}a^{20}+\frac{59\!\cdots\!99}{12\!\cdots\!00}a^{19}-\frac{23\!\cdots\!77}{21\!\cdots\!00}a^{18}-\frac{81\!\cdots\!93}{37\!\cdots\!00}a^{17}-\frac{66\!\cdots\!57}{31\!\cdots\!00}a^{16}-\frac{26\!\cdots\!03}{37\!\cdots\!00}a^{15}-\frac{31\!\cdots\!35}{84\!\cdots\!12}a^{14}-\frac{15\!\cdots\!97}{42\!\cdots\!00}a^{13}+\frac{15\!\cdots\!69}{18\!\cdots\!00}a^{12}+\frac{20\!\cdots\!47}{75\!\cdots\!08}a^{11}+\frac{25\!\cdots\!67}{63\!\cdots\!00}a^{10}+\frac{68\!\cdots\!31}{23\!\cdots\!00}a^{9}+\frac{22\!\cdots\!79}{25\!\cdots\!00}a^{8}+\frac{24\!\cdots\!59}{87\!\cdots\!00}a^{7}-\frac{27\!\cdots\!67}{39\!\cdots\!00}a^{6}+\frac{57\!\cdots\!07}{63\!\cdots\!00}a^{5}-\frac{59\!\cdots\!31}{94\!\cdots\!60}a^{4}+\frac{74\!\cdots\!23}{39\!\cdots\!00}a^{3}+\frac{22\!\cdots\!77}{43\!\cdots\!00}a^{2}-\frac{17\!\cdots\!11}{84\!\cdots\!00}a+\frac{66\!\cdots\!83}{21\!\cdots\!20}$, $\frac{38\!\cdots\!57}{75\!\cdots\!00}a^{28}-\frac{13\!\cdots\!41}{75\!\cdots\!00}a^{27}+\frac{11\!\cdots\!39}{68\!\cdots\!00}a^{26}-\frac{64\!\cdots\!41}{25\!\cdots\!00}a^{25}+\frac{31\!\cdots\!67}{75\!\cdots\!00}a^{24}-\frac{86\!\cdots\!53}{75\!\cdots\!00}a^{23}+\frac{25\!\cdots\!67}{25\!\cdots\!00}a^{22}+\frac{24\!\cdots\!49}{15\!\cdots\!60}a^{21}+\frac{26\!\cdots\!01}{58\!\cdots\!00}a^{20}-\frac{72\!\cdots\!09}{25\!\cdots\!00}a^{19}-\frac{14\!\cdots\!11}{25\!\cdots\!00}a^{18}-\frac{33\!\cdots\!37}{75\!\cdots\!00}a^{17}+\frac{23\!\cdots\!91}{25\!\cdots\!00}a^{16}-\frac{11\!\cdots\!79}{75\!\cdots\!00}a^{15}-\frac{31\!\cdots\!69}{84\!\cdots\!00}a^{14}+\frac{17\!\cdots\!05}{11\!\cdots\!16}a^{13}+\frac{86\!\cdots\!23}{37\!\cdots\!00}a^{12}+\frac{11\!\cdots\!51}{18\!\cdots\!00}a^{11}-\frac{31\!\cdots\!49}{39\!\cdots\!00}a^{10}+\frac{31\!\cdots\!63}{94\!\cdots\!00}a^{9}-\frac{32\!\cdots\!13}{12\!\cdots\!40}a^{8}+\frac{15\!\cdots\!67}{15\!\cdots\!00}a^{7}-\frac{56\!\cdots\!63}{15\!\cdots\!00}a^{6}+\frac{66\!\cdots\!99}{98\!\cdots\!00}a^{5}-\frac{22\!\cdots\!33}{23\!\cdots\!00}a^{4}+\frac{65\!\cdots\!17}{39\!\cdots\!00}a^{3}-\frac{30\!\cdots\!99}{21\!\cdots\!00}a^{2}+\frac{78\!\cdots\!73}{21\!\cdots\!00}a-\frac{21\!\cdots\!99}{53\!\cdots\!00}$, $\frac{48\!\cdots\!29}{25\!\cdots\!00}a^{28}-\frac{45\!\cdots\!13}{31\!\cdots\!00}a^{27}+\frac{67\!\cdots\!41}{11\!\cdots\!00}a^{26}+\frac{47\!\cdots\!31}{70\!\cdots\!00}a^{25}+\frac{23\!\cdots\!17}{12\!\cdots\!00}a^{24}-\frac{24\!\cdots\!93}{63\!\cdots\!00}a^{23}-\frac{29\!\cdots\!09}{42\!\cdots\!00}a^{22}+\frac{25\!\cdots\!23}{63\!\cdots\!00}a^{21}+\frac{17\!\cdots\!63}{97\!\cdots\!60}a^{20}+\frac{57\!\cdots\!31}{14\!\cdots\!20}a^{19}-\frac{80\!\cdots\!87}{84\!\cdots\!20}a^{18}-\frac{94\!\cdots\!91}{48\!\cdots\!00}a^{17}-\frac{12\!\cdots\!43}{64\!\cdots\!40}a^{16}-\frac{39\!\cdots\!83}{63\!\cdots\!00}a^{15}-\frac{13\!\cdots\!91}{42\!\cdots\!00}a^{14}-\frac{66\!\cdots\!61}{21\!\cdots\!00}a^{13}+\frac{38\!\cdots\!87}{50\!\cdots\!20}a^{12}+\frac{15\!\cdots\!19}{63\!\cdots\!00}a^{11}+\frac{82\!\cdots\!81}{21\!\cdots\!00}a^{10}+\frac{38\!\cdots\!43}{15\!\cdots\!00}a^{9}+\frac{60\!\cdots\!57}{85\!\cdots\!00}a^{8}+\frac{24\!\cdots\!67}{10\!\cdots\!00}a^{7}-\frac{58\!\cdots\!37}{87\!\cdots\!00}a^{6}+\frac{83\!\cdots\!79}{10\!\cdots\!00}a^{5}-\frac{25\!\cdots\!61}{15\!\cdots\!00}a^{4}+\frac{10\!\cdots\!43}{52\!\cdots\!32}a^{3}-\frac{20\!\cdots\!69}{14\!\cdots\!00}a^{2}+\frac{15\!\cdots\!83}{28\!\cdots\!00}a+\frac{34\!\cdots\!61}{35\!\cdots\!00}$, $\frac{43\!\cdots\!29}{15\!\cdots\!60}a^{28}-\frac{18\!\cdots\!05}{75\!\cdots\!08}a^{27}+\frac{31\!\cdots\!83}{34\!\cdots\!00}a^{26}+\frac{27\!\cdots\!69}{31\!\cdots\!00}a^{25}+\frac{10\!\cdots\!39}{37\!\cdots\!00}a^{24}-\frac{13\!\cdots\!63}{23\!\cdots\!00}a^{23}-\frac{11\!\cdots\!87}{12\!\cdots\!00}a^{22}+\frac{39\!\cdots\!17}{72\!\cdots\!00}a^{21}+\frac{39\!\cdots\!11}{14\!\cdots\!40}a^{20}+\frac{18\!\cdots\!01}{31\!\cdots\!00}a^{19}-\frac{14\!\cdots\!01}{12\!\cdots\!00}a^{18}-\frac{26\!\cdots\!37}{94\!\cdots\!00}a^{17}-\frac{13\!\cdots\!53}{50\!\cdots\!72}a^{16}-\frac{66\!\cdots\!87}{69\!\cdots\!00}a^{15}-\frac{19\!\cdots\!03}{42\!\cdots\!00}a^{14}-\frac{54\!\cdots\!81}{10\!\cdots\!00}a^{13}+\frac{82\!\cdots\!83}{75\!\cdots\!00}a^{12}+\frac{25\!\cdots\!39}{75\!\cdots\!08}a^{11}+\frac{10\!\cdots\!37}{15\!\cdots\!00}a^{10}+\frac{38\!\cdots\!09}{94\!\cdots\!60}a^{9}+\frac{26\!\cdots\!77}{25\!\cdots\!00}a^{8}+\frac{46\!\cdots\!93}{12\!\cdots\!00}a^{7}-\frac{72\!\cdots\!17}{78\!\cdots\!00}a^{6}+\frac{66\!\cdots\!83}{39\!\cdots\!00}a^{5}-\frac{18\!\cdots\!77}{47\!\cdots\!00}a^{4}+\frac{17\!\cdots\!07}{39\!\cdots\!00}a^{3}-\frac{12\!\cdots\!01}{33\!\cdots\!00}a^{2}+\frac{17\!\cdots\!83}{64\!\cdots\!00}a-\frac{50\!\cdots\!67}{83\!\cdots\!00}$, $\frac{87\!\cdots\!81}{75\!\cdots\!00}a^{28}+\frac{17\!\cdots\!57}{15\!\cdots\!60}a^{27}+\frac{23\!\cdots\!53}{68\!\cdots\!00}a^{26}+\frac{20\!\cdots\!33}{50\!\cdots\!20}a^{25}+\frac{13\!\cdots\!77}{75\!\cdots\!00}a^{24}-\frac{85\!\cdots\!87}{75\!\cdots\!00}a^{23}-\frac{70\!\cdots\!79}{25\!\cdots\!00}a^{22}-\frac{27\!\cdots\!37}{75\!\cdots\!00}a^{21}+\frac{77\!\cdots\!51}{58\!\cdots\!00}a^{20}+\frac{11\!\cdots\!19}{84\!\cdots\!00}a^{19}+\frac{14\!\cdots\!39}{50\!\cdots\!20}a^{18}-\frac{12\!\cdots\!11}{75\!\cdots\!00}a^{17}-\frac{14\!\cdots\!53}{10\!\cdots\!00}a^{16}-\frac{86\!\cdots\!21}{15\!\cdots\!60}a^{15}-\frac{98\!\cdots\!99}{16\!\cdots\!40}a^{14}-\frac{20\!\cdots\!99}{84\!\cdots\!00}a^{13}+\frac{27\!\cdots\!73}{18\!\cdots\!00}a^{12}+\frac{24\!\cdots\!11}{37\!\cdots\!40}a^{11}+\frac{22\!\cdots\!61}{10\!\cdots\!00}a^{10}+\frac{44\!\cdots\!89}{94\!\cdots\!00}a^{9}+\frac{25\!\cdots\!13}{12\!\cdots\!00}a^{8}+\frac{10\!\cdots\!33}{15\!\cdots\!00}a^{7}+\frac{69\!\cdots\!69}{52\!\cdots\!00}a^{6}-\frac{82\!\cdots\!71}{25\!\cdots\!80}a^{5}-\frac{49\!\cdots\!49}{11\!\cdots\!00}a^{4}-\frac{15\!\cdots\!83}{30\!\cdots\!00}a^{3}+\frac{27\!\cdots\!87}{27\!\cdots\!00}a^{2}-\frac{12\!\cdots\!81}{42\!\cdots\!00}a+\frac{81\!\cdots\!59}{26\!\cdots\!00}$, $\frac{94\!\cdots\!29}{75\!\cdots\!80}a^{28}-\frac{35\!\cdots\!27}{75\!\cdots\!00}a^{27}+\frac{49\!\cdots\!43}{13\!\cdots\!60}a^{26}+\frac{14\!\cdots\!69}{25\!\cdots\!00}a^{25}+\frac{87\!\cdots\!03}{75\!\cdots\!00}a^{24}-\frac{73\!\cdots\!43}{30\!\cdots\!32}a^{23}-\frac{13\!\cdots\!53}{25\!\cdots\!00}a^{22}+\frac{20\!\cdots\!63}{75\!\cdots\!00}a^{21}+\frac{53\!\cdots\!27}{44\!\cdots\!00}a^{20}+\frac{25\!\cdots\!71}{84\!\cdots\!00}a^{19}-\frac{31\!\cdots\!23}{50\!\cdots\!20}a^{18}-\frac{98\!\cdots\!03}{75\!\cdots\!00}a^{17}-\frac{15\!\cdots\!91}{93\!\cdots\!00}a^{16}-\frac{29\!\cdots\!61}{75\!\cdots\!00}a^{15}-\frac{20\!\cdots\!01}{93\!\cdots\!00}a^{14}-\frac{68\!\cdots\!21}{28\!\cdots\!00}a^{13}+\frac{38\!\cdots\!51}{75\!\cdots\!00}a^{12}+\frac{33\!\cdots\!09}{18\!\cdots\!20}a^{11}+\frac{11\!\cdots\!49}{42\!\cdots\!60}a^{10}+\frac{14\!\cdots\!31}{94\!\cdots\!00}a^{9}+\frac{12\!\cdots\!91}{25\!\cdots\!00}a^{8}+\frac{24\!\cdots\!53}{15\!\cdots\!00}a^{7}-\frac{75\!\cdots\!87}{17\!\cdots\!00}a^{6}+\frac{18\!\cdots\!81}{12\!\cdots\!00}a^{5}-\frac{32\!\cdots\!49}{47\!\cdots\!00}a^{4}+\frac{69\!\cdots\!27}{98\!\cdots\!00}a^{3}+\frac{14\!\cdots\!71}{43\!\cdots\!00}a^{2}-\frac{13\!\cdots\!19}{84\!\cdots\!00}a+\frac{26\!\cdots\!97}{10\!\cdots\!00}$, $\frac{35\!\cdots\!41}{25\!\cdots\!00}a^{28}-\frac{40\!\cdots\!31}{34\!\cdots\!00}a^{27}+\frac{12\!\cdots\!47}{28\!\cdots\!00}a^{26}+\frac{19\!\cdots\!07}{42\!\cdots\!00}a^{25}+\frac{10\!\cdots\!89}{78\!\cdots\!00}a^{24}-\frac{35\!\cdots\!01}{12\!\cdots\!00}a^{23}-\frac{29\!\cdots\!07}{63\!\cdots\!00}a^{22}+\frac{36\!\cdots\!73}{12\!\cdots\!00}a^{21}+\frac{12\!\cdots\!21}{97\!\cdots\!00}a^{20}+\frac{35\!\cdots\!29}{12\!\cdots\!00}a^{19}-\frac{42\!\cdots\!47}{63\!\cdots\!00}a^{18}-\frac{17\!\cdots\!21}{12\!\cdots\!00}a^{17}-\frac{20\!\cdots\!41}{15\!\cdots\!00}a^{16}-\frac{38\!\cdots\!33}{84\!\cdots\!20}a^{15}-\frac{48\!\cdots\!99}{21\!\cdots\!00}a^{14}-\frac{34\!\cdots\!61}{15\!\cdots\!00}a^{13}+\frac{28\!\cdots\!01}{50\!\cdots\!20}a^{12}+\frac{10\!\cdots\!27}{63\!\cdots\!00}a^{11}+\frac{18\!\cdots\!09}{63\!\cdots\!00}a^{10}+\frac{11\!\cdots\!71}{60\!\cdots\!00}a^{9}+\frac{42\!\cdots\!19}{85\!\cdots\!00}a^{8}+\frac{14\!\cdots\!29}{78\!\cdots\!00}a^{7}-\frac{19\!\cdots\!23}{39\!\cdots\!00}a^{6}+\frac{14\!\cdots\!07}{21\!\cdots\!00}a^{5}-\frac{12\!\cdots\!33}{89\!\cdots\!20}a^{4}+\frac{75\!\cdots\!13}{43\!\cdots\!00}a^{3}-\frac{41\!\cdots\!31}{29\!\cdots\!40}a^{2}+\frac{79\!\cdots\!67}{93\!\cdots\!00}a-\frac{38\!\cdots\!27}{23\!\cdots\!80}$, $\frac{31\!\cdots\!91}{89\!\cdots\!40}a^{28}-\frac{79\!\cdots\!29}{29\!\cdots\!00}a^{27}+\frac{71\!\cdots\!97}{65\!\cdots\!00}a^{26}+\frac{11\!\cdots\!97}{97\!\cdots\!00}a^{25}+\frac{12\!\cdots\!61}{36\!\cdots\!60}a^{24}-\frac{20\!\cdots\!11}{29\!\cdots\!00}a^{23}-\frac{11\!\cdots\!11}{97\!\cdots\!60}a^{22}+\frac{19\!\cdots\!23}{29\!\cdots\!00}a^{21}+\frac{19\!\cdots\!39}{58\!\cdots\!60}a^{20}+\frac{70\!\cdots\!77}{97\!\cdots\!00}a^{19}-\frac{71\!\cdots\!83}{48\!\cdots\!00}a^{18}-\frac{99\!\cdots\!83}{29\!\cdots\!00}a^{17}-\frac{41\!\cdots\!93}{12\!\cdots\!00}a^{16}-\frac{25\!\cdots\!61}{22\!\cdots\!00}a^{15}-\frac{34\!\cdots\!17}{59\!\cdots\!00}a^{14}-\frac{20\!\cdots\!07}{32\!\cdots\!00}a^{13}+\frac{77\!\cdots\!47}{58\!\cdots\!00}a^{12}+\frac{60\!\cdots\!81}{14\!\cdots\!00}a^{11}+\frac{15\!\cdots\!33}{19\!\cdots\!72}a^{10}+\frac{86\!\cdots\!09}{18\!\cdots\!00}a^{9}+\frac{50\!\cdots\!81}{39\!\cdots\!20}a^{8}+\frac{28\!\cdots\!01}{60\!\cdots\!00}a^{7}-\frac{33\!\cdots\!03}{30\!\cdots\!00}a^{6}+\frac{87\!\cdots\!73}{49\!\cdots\!00}a^{5}-\frac{14\!\cdots\!29}{36\!\cdots\!00}a^{4}+\frac{13\!\cdots\!09}{30\!\cdots\!00}a^{3}-\frac{23\!\cdots\!17}{67\!\cdots\!40}a^{2}+\frac{11\!\cdots\!59}{64\!\cdots\!00}a+\frac{79\!\cdots\!69}{83\!\cdots\!00}$, $\frac{16\!\cdots\!53}{37\!\cdots\!00}a^{28}-\frac{12\!\cdots\!23}{37\!\cdots\!00}a^{27}+\frac{46\!\cdots\!81}{34\!\cdots\!00}a^{26}+\frac{38\!\cdots\!53}{25\!\cdots\!60}a^{25}+\frac{15\!\cdots\!69}{37\!\cdots\!00}a^{24}-\frac{32\!\cdots\!23}{37\!\cdots\!00}a^{23}-\frac{18\!\cdots\!67}{12\!\cdots\!00}a^{22}+\frac{31\!\cdots\!07}{37\!\cdots\!00}a^{21}+\frac{91\!\cdots\!39}{22\!\cdots\!00}a^{20}+\frac{38\!\cdots\!43}{42\!\cdots\!00}a^{19}-\frac{21\!\cdots\!09}{12\!\cdots\!00}a^{18}-\frac{15\!\cdots\!27}{37\!\cdots\!00}a^{17}-\frac{24\!\cdots\!47}{56\!\cdots\!08}a^{16}-\frac{54\!\cdots\!93}{37\!\cdots\!00}a^{15}-\frac{10\!\cdots\!41}{14\!\cdots\!00}a^{14}-\frac{23\!\cdots\!57}{28\!\cdots\!40}a^{13}+\frac{19\!\cdots\!63}{11\!\cdots\!00}a^{12}+\frac{98\!\cdots\!51}{18\!\cdots\!20}a^{11}+\frac{54\!\cdots\!47}{52\!\cdots\!00}a^{10}+\frac{29\!\cdots\!81}{47\!\cdots\!00}a^{9}+\frac{10\!\cdots\!83}{63\!\cdots\!00}a^{8}+\frac{48\!\cdots\!33}{78\!\cdots\!00}a^{7}-\frac{11\!\cdots\!41}{87\!\cdots\!00}a^{6}+\frac{15\!\cdots\!01}{63\!\cdots\!00}a^{5}-\frac{13\!\cdots\!61}{29\!\cdots\!00}a^{4}+\frac{11\!\cdots\!69}{19\!\cdots\!00}a^{3}-\frac{31\!\cdots\!09}{54\!\cdots\!00}a^{2}+\frac{79\!\cdots\!93}{21\!\cdots\!00}a-\frac{44\!\cdots\!11}{33\!\cdots\!00}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 334973822195478100000000000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{14}\cdot 334973822195478100000000000000 \cdot 29}{2\cdot\sqrt{40541810269184654077554223987906200211370142702911343138677412109288996864}}\cr\approx \mathstrut & 228021.319895417 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^29 - x^28 + 31*x^27 + 27*x^26 + 941*x^25 - 20031*x^24 - 30389*x^23 + 210983*x^22 + 9367867*x^21 + 18647003*x^20 - 51060099*x^19 - 979663711*x^18 - 741336241*x^17 - 32098060789*x^16 - 156910730311*x^15 - 132756022611*x^14 + 3952184725432*x^13 + 11271711723834*x^12 + 18506440529168*x^11 + 126537953479264*x^10 + 337098581593616*x^9 + 1206843794414080*x^8 - 3657629942420016*x^7 + 5329245181928848*x^6 - 10623419127753216*x^5 + 13803511669571360*x^4 - 12576643486615680*x^3 + 8274398085859968*x^2 - 2058625455644160*x + 214348548989952)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^29 - x^28 + 31*x^27 + 27*x^26 + 941*x^25 - 20031*x^24 - 30389*x^23 + 210983*x^22 + 9367867*x^21 + 18647003*x^20 - 51060099*x^19 - 979663711*x^18 - 741336241*x^17 - 32098060789*x^16 - 156910730311*x^15 - 132756022611*x^14 + 3952184725432*x^13 + 11271711723834*x^12 + 18506440529168*x^11 + 126537953479264*x^10 + 337098581593616*x^9 + 1206843794414080*x^8 - 3657629942420016*x^7 + 5329245181928848*x^6 - 10623419127753216*x^5 + 13803511669571360*x^4 - 12576643486615680*x^3 + 8274398085859968*x^2 - 2058625455644160*x + 214348548989952, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^29 - x^28 + 31*x^27 + 27*x^26 + 941*x^25 - 20031*x^24 - 30389*x^23 + 210983*x^22 + 9367867*x^21 + 18647003*x^20 - 51060099*x^19 - 979663711*x^18 - 741336241*x^17 - 32098060789*x^16 - 156910730311*x^15 - 132756022611*x^14 + 3952184725432*x^13 + 11271711723834*x^12 + 18506440529168*x^11 + 126537953479264*x^10 + 337098581593616*x^9 + 1206843794414080*x^8 - 3657629942420016*x^7 + 5329245181928848*x^6 - 10623419127753216*x^5 + 13803511669571360*x^4 - 12576643486615680*x^3 + 8274398085859968*x^2 - 2058625455644160*x + 214348548989952);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^29 - x^28 + 31*x^27 + 27*x^26 + 941*x^25 - 20031*x^24 - 30389*x^23 + 210983*x^22 + 9367867*x^21 + 18647003*x^20 - 51060099*x^19 - 979663711*x^18 - 741336241*x^17 - 32098060789*x^16 - 156910730311*x^15 - 132756022611*x^14 + 3952184725432*x^13 + 11271711723834*x^12 + 18506440529168*x^11 + 126537953479264*x^10 + 337098581593616*x^9 + 1206843794414080*x^8 - 3657629942420016*x^7 + 5329245181928848*x^6 - 10623419127753216*x^5 + 13803511669571360*x^4 - 12576643486615680*x^3 + 8274398085859968*x^2 - 2058625455644160*x + 214348548989952);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{29}$ (as 29T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 58
The 16 conjugacy class representatives for $D_{29}$
Character table for $D_{29}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.2.0.1}{2} }^{14}{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.2.0.1}{2} }^{14}{,}\,{\href{/padicField/5.1.0.1}{1} }$ $29$ $29$ R $29$ $29$ ${\href{/padicField/23.2.0.1}{2} }^{14}{,}\,{\href{/padicField/23.1.0.1}{1} }$ $29$ $29$ ${\href{/padicField/37.2.0.1}{2} }^{14}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.2.0.1}{2} }^{14}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.2.0.1}{2} }^{14}{,}\,{\href{/padicField/43.1.0.1}{1} }$ $29$ $29$ R

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
\(13\) Copy content Toggle raw display $\Q_{13}$$x + 11$$1$$1$$0$Trivial$[\ ]$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
\(59\) Copy content Toggle raw display Deg $29$$29$$1$$28$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.52.2t1.a.a$1$ $ 2^{2} \cdot 13 $ \(\Q(\sqrt{-13}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.181012.29t2.a.g$2$ $ 2^{2} \cdot 13 \cdot 59^{2}$ 29.1.40541810269184654077554223987906200211370142702911343138677412109288996864.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.181012.29t2.a.b$2$ $ 2^{2} \cdot 13 \cdot 59^{2}$ 29.1.40541810269184654077554223987906200211370142702911343138677412109288996864.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.181012.29t2.a.m$2$ $ 2^{2} \cdot 13 \cdot 59^{2}$ 29.1.40541810269184654077554223987906200211370142702911343138677412109288996864.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.181012.29t2.a.j$2$ $ 2^{2} \cdot 13 \cdot 59^{2}$ 29.1.40541810269184654077554223987906200211370142702911343138677412109288996864.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.181012.29t2.a.e$2$ $ 2^{2} \cdot 13 \cdot 59^{2}$ 29.1.40541810269184654077554223987906200211370142702911343138677412109288996864.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.181012.29t2.a.i$2$ $ 2^{2} \cdot 13 \cdot 59^{2}$ 29.1.40541810269184654077554223987906200211370142702911343138677412109288996864.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.181012.29t2.a.l$2$ $ 2^{2} \cdot 13 \cdot 59^{2}$ 29.1.40541810269184654077554223987906200211370142702911343138677412109288996864.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.181012.29t2.a.h$2$ $ 2^{2} \cdot 13 \cdot 59^{2}$ 29.1.40541810269184654077554223987906200211370142702911343138677412109288996864.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.181012.29t2.a.f$2$ $ 2^{2} \cdot 13 \cdot 59^{2}$ 29.1.40541810269184654077554223987906200211370142702911343138677412109288996864.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.181012.29t2.a.d$2$ $ 2^{2} \cdot 13 \cdot 59^{2}$ 29.1.40541810269184654077554223987906200211370142702911343138677412109288996864.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.181012.29t2.a.c$2$ $ 2^{2} \cdot 13 \cdot 59^{2}$ 29.1.40541810269184654077554223987906200211370142702911343138677412109288996864.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.181012.29t2.a.a$2$ $ 2^{2} \cdot 13 \cdot 59^{2}$ 29.1.40541810269184654077554223987906200211370142702911343138677412109288996864.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.181012.29t2.a.n$2$ $ 2^{2} \cdot 13 \cdot 59^{2}$ 29.1.40541810269184654077554223987906200211370142702911343138677412109288996864.1 $D_{29}$ (as 29T2) $1$ $0$
* 2.181012.29t2.a.k$2$ $ 2^{2} \cdot 13 \cdot 59^{2}$ 29.1.40541810269184654077554223987906200211370142702911343138677412109288996864.1 $D_{29}$ (as 29T2) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.