Normalized defining polynomial
\( x^{20} - 5 x^{19} - 35 x^{18} + 215 x^{17} + 420 x^{16} + 39885 x^{15} - 185975 x^{14} + \cdots + 13\!\cdots\!75 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[4, 8]$ |
| |
| Discriminant: |
\(83867218967598487041513866410602857358753681182861328125\)
\(\medspace = 5^{31}\cdot 7^{10}\cdot 41^{16}\)
|
| |
| Root discriminant: | \(625.43\) |
| |
| Galois root discriminant: | $5^{31/20}7^{1/2}41^{4/5}\approx 625.4313002647299$ | ||
| Ramified primes: |
\(5\), \(7\), \(41\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{205}a^{10}+\frac{9}{41}a^{9}-\frac{1}{41}a^{8}+\frac{10}{41}a^{7}-\frac{5}{41}a^{6}-\frac{8}{41}a^{5}+\frac{8}{41}a^{4}+\frac{20}{41}a^{2}+\frac{5}{41}a+\frac{15}{41}$, $\frac{1}{205}a^{11}+\frac{4}{41}a^{9}+\frac{14}{41}a^{8}-\frac{4}{41}a^{7}+\frac{12}{41}a^{6}-\frac{1}{41}a^{5}+\frac{9}{41}a^{4}+\frac{20}{41}a^{3}+\frac{7}{41}a^{2}-\frac{5}{41}a-\frac{19}{41}$, $\frac{1}{410}a^{12}+\frac{39}{82}a^{9}+\frac{8}{41}a^{8}-\frac{12}{41}a^{7}+\frac{17}{82}a^{6}-\frac{18}{41}a^{5}+\frac{12}{41}a^{4}+\frac{7}{82}a^{3}-\frac{18}{41}a^{2}+\frac{2}{41}a-\frac{13}{82}$, $\frac{1}{2050}a^{13}-\frac{1}{410}a^{10}+\frac{51}{205}a^{9}+\frac{88}{205}a^{8}-\frac{3}{82}a^{7}-\frac{2}{41}a^{6}-\frac{18}{41}a^{5}-\frac{7}{82}a^{4}+\frac{23}{205}a^{3}-\frac{6}{41}a^{2}+\frac{27}{82}a-\frac{13}{41}$, $\frac{1}{2050}a^{14}-\frac{1}{410}a^{11}+\frac{48}{205}a^{9}+\frac{17}{82}a^{8}-\frac{20}{41}a^{7}-\frac{9}{41}a^{6}-\frac{11}{82}a^{5}+\frac{33}{205}a^{4}-\frac{6}{41}a^{3}+\frac{37}{82}a^{2}+\frac{19}{41}a+\frac{14}{41}$, $\frac{1}{2050}a^{15}+\frac{6}{41}a^{9}-\frac{5}{41}a^{8}-\frac{9}{41}a^{7}-\frac{3}{41}a^{6}+\frac{18}{205}a^{5}-\frac{9}{41}a^{4}-\frac{19}{41}a^{3}-\frac{16}{41}a^{2}-\frac{19}{41}a+\frac{23}{82}$, $\frac{1}{2050}a^{16}+\frac{12}{41}a^{9}-\frac{20}{41}a^{8}-\frac{16}{41}a^{7}-\frac{52}{205}a^{6}-\frac{15}{41}a^{5}-\frac{13}{41}a^{4}-\frac{16}{41}a^{3}-\frac{4}{41}a^{2}-\frac{31}{82}a+\frac{1}{41}$, $\frac{1}{2050}a^{17}+\frac{14}{41}a^{9}+\frac{3}{41}a^{8}+\frac{23}{205}a^{7}-\frac{2}{41}a^{6}+\frac{16}{41}a^{5}-\frac{4}{41}a^{4}-\frac{4}{41}a^{3}+\frac{29}{82}a^{2}-\frac{12}{41}a+\frac{2}{41}$, $\frac{1}{84050}a^{18}+\frac{1}{42025}a^{17}+\frac{11}{84050}a^{16}-\frac{13}{84050}a^{15}-\frac{8}{42025}a^{14}-\frac{3}{84050}a^{13}-\frac{4}{8405}a^{12}+\frac{9}{8405}a^{11}+\frac{5}{3362}a^{10}-\frac{2271}{8405}a^{9}-\frac{1621}{8405}a^{8}-\frac{203}{16810}a^{7}-\frac{832}{8405}a^{6}+\frac{611}{8405}a^{5}+\frac{8249}{16810}a^{4}-\frac{133}{410}a^{3}-\frac{224}{1681}a^{2}+\frac{132}{1681}a-\frac{1113}{3362}$, $\frac{1}{11\cdots 50}a^{19}+\frac{22\cdots 19}{11\cdots 50}a^{18}+\frac{44\cdots 07}{11\cdots 50}a^{17}-\frac{13\cdots 22}{57\cdots 25}a^{16}+\frac{17\cdots 89}{11\cdots 50}a^{15}+\frac{21\cdots 19}{57\cdots 25}a^{14}+\frac{71\cdots 69}{11\cdots 05}a^{13}+\frac{59\cdots 59}{28\cdots 05}a^{12}+\frac{18\cdots 94}{11\cdots 05}a^{11}+\frac{12\cdots 62}{23\cdots 01}a^{10}-\frac{49\cdots 28}{11\cdots 05}a^{9}+\frac{13\cdots 12}{76\cdots 55}a^{8}-\frac{65\cdots 24}{11\cdots 05}a^{7}+\frac{18\cdots 03}{11\cdots 05}a^{6}-\frac{19\cdots 03}{11\cdots 05}a^{5}-\frac{48\cdots 27}{23\cdots 10}a^{4}+\frac{12\cdots 09}{46\cdots 02}a^{3}+\frac{11\cdots 69}{46\cdots 02}a^{2}+\frac{20\cdots 08}{23\cdots 01}a+\frac{13\cdots 15}{46\cdots 02}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{5}$, which has order $5$ (assuming GRH) |
| |
| Narrow class group: | $C_{10}$, which has order $10$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{51\cdots 82}{75\cdots 29}a^{19}-\frac{64\cdots 01}{15\cdots 58}a^{18}-\frac{13\cdots 71}{75\cdots 29}a^{17}+\frac{83\cdots 25}{15\cdots 58}a^{16}+\frac{28\cdots 92}{37\cdots 45}a^{15}+\frac{24\cdots 51}{75\cdots 29}a^{14}-\frac{29\cdots 01}{15\cdots 58}a^{13}+\frac{80\cdots 62}{75\cdots 29}a^{12}-\frac{94\cdots 84}{75\cdots 29}a^{11}+\frac{84\cdots 21}{15\cdots 58}a^{10}+\frac{23\cdots 30}{75\cdots 29}a^{9}-\frac{56\cdots 35}{49\cdots 79}a^{8}+\frac{39\cdots 95}{15\cdots 58}a^{7}-\frac{13\cdots 70}{75\cdots 29}a^{6}+\frac{71\cdots 26}{75\cdots 29}a^{5}-\frac{32\cdots 15}{15\cdots 58}a^{4}+\frac{16\cdots 45}{15\cdots 58}a^{3}+\frac{45\cdots 85}{75\cdots 29}a^{2}-\frac{28\cdots 20}{75\cdots 29}a+\frac{15\cdots 17}{75\cdots 29}$, $\frac{31\cdots 33}{68\cdots 50}a^{19}+\frac{58\cdots 09}{68\cdots 50}a^{18}-\frac{69\cdots 59}{34\cdots 25}a^{17}+\frac{29\cdots 43}{34\cdots 25}a^{16}+\frac{14\cdots 16}{34\cdots 25}a^{15}-\frac{15\cdots 71}{68\cdots 05}a^{14}+\frac{46\cdots 99}{13\cdots 10}a^{13}-\frac{33\cdots 21}{68\cdots 05}a^{12}+\frac{39\cdots 34}{68\cdots 05}a^{11}-\frac{69\cdots 99}{13\cdots 10}a^{10}+\frac{18\cdots 64}{68\cdots 05}a^{9}-\frac{47\cdots 98}{45\cdots 55}a^{8}-\frac{60\cdots 73}{13\cdots 10}a^{7}+\frac{42\cdots 83}{68\cdots 05}a^{6}-\frac{40\cdots 94}{68\cdots 05}a^{5}+\frac{65\cdots 98}{13\cdots 21}a^{4}-\frac{50\cdots 31}{27\cdots 42}a^{3}+\frac{53\cdots 78}{13\cdots 21}a^{2}+\frac{99\cdots 73}{27\cdots 42}a-\frac{45\cdots 55}{13\cdots 21}$, $\frac{42\cdots 02}{34\cdots 25}a^{19}-\frac{16\cdots 94}{34\cdots 25}a^{18}-\frac{66\cdots 92}{34\cdots 25}a^{17}-\frac{82\cdots 67}{68\cdots 50}a^{16}+\frac{60\cdots 41}{68\cdots 50}a^{15}+\frac{44\cdots 63}{68\cdots 05}a^{14}-\frac{16\cdots 71}{68\cdots 05}a^{13}+\frac{17\cdots 86}{68\cdots 05}a^{12}-\frac{14\cdots 46}{68\cdots 05}a^{11}+\frac{80\cdots 43}{68\cdots 05}a^{10}+\frac{20\cdots 02}{68\cdots 05}a^{9}-\frac{31\cdots 89}{45\cdots 55}a^{8}+\frac{40\cdots 08}{68\cdots 05}a^{7}-\frac{17\cdots 51}{68\cdots 05}a^{6}+\frac{18\cdots 83}{68\cdots 05}a^{5}-\frac{51\cdots 20}{13\cdots 21}a^{4}+\frac{58\cdots 89}{13\cdots 21}a^{3}+\frac{18\cdots 63}{13\cdots 21}a^{2}-\frac{13\cdots 47}{27\cdots 42}a+\frac{21\cdots 81}{27\cdots 42}$, $\frac{86\cdots 79}{46\cdots 02}a^{19}-\frac{88\cdots 04}{57\cdots 25}a^{18}-\frac{77\cdots 59}{57\cdots 25}a^{17}+\frac{25\cdots 77}{23\cdots 10}a^{16}+\frac{17\cdots 81}{23\cdots 10}a^{15}+\frac{74\cdots 99}{23\cdots 10}a^{14}-\frac{22\cdots 47}{23\cdots 10}a^{13}+\frac{35\cdots 22}{23\cdots 01}a^{12}+\frac{17\cdots 61}{23\cdots 10}a^{11}+\frac{19\cdots 31}{23\cdots 10}a^{10}+\frac{18\cdots 24}{23\cdots 01}a^{9}-\frac{10\cdots 63}{15\cdots 10}a^{8}+\frac{14\cdots 37}{56\cdots 10}a^{7}-\frac{59\cdots 16}{23\cdots 01}a^{6}+\frac{58\cdots 97}{46\cdots 02}a^{5}+\frac{20\cdots 99}{23\cdots 01}a^{4}+\frac{28\cdots 29}{23\cdots 01}a^{3}+\frac{57\cdots 93}{46\cdots 02}a^{2}+\frac{18\cdots 48}{23\cdots 01}a+\frac{24\cdots 93}{46\cdots 02}$, $\frac{39\cdots 03}{46\cdots 02}a^{19}-\frac{53\cdots 31}{11\cdots 50}a^{18}-\frac{29\cdots 73}{57\cdots 25}a^{17}+\frac{35\cdots 49}{11\cdots 05}a^{16}+\frac{80\cdots 09}{46\cdots 02}a^{15}+\frac{62\cdots 03}{23\cdots 10}a^{14}-\frac{27\cdots 79}{11\cdots 05}a^{13}+\frac{18\cdots 72}{23\cdots 01}a^{12}-\frac{82\cdots 29}{46\cdots 02}a^{11}+\frac{27\cdots 03}{11\cdots 05}a^{10}+\frac{13\cdots 30}{23\cdots 01}a^{9}-\frac{34\cdots 41}{15\cdots 10}a^{8}+\frac{66\cdots 07}{28\cdots 05}a^{7}-\frac{11\cdots 10}{23\cdots 01}a^{6}+\frac{15\cdots 71}{46\cdots 02}a^{5}+\frac{20\cdots 81}{46\cdots 02}a^{4}-\frac{75\cdots 83}{46\cdots 02}a^{3}+\frac{32\cdots 01}{46\cdots 02}a^{2}+\frac{87\cdots 05}{23\cdots 01}a-\frac{25\cdots 87}{46\cdots 02}$, $\frac{90\cdots 03}{57\cdots 25}a^{19}-\frac{78\cdots 07}{57\cdots 25}a^{18}-\frac{40\cdots 86}{57\cdots 25}a^{17}+\frac{15\cdots 38}{57\cdots 25}a^{16}-\frac{19\cdots 47}{11\cdots 50}a^{15}+\frac{76\cdots 71}{11\cdots 50}a^{14}-\frac{12\cdots 19}{23\cdots 10}a^{13}+\frac{10\cdots 23}{23\cdots 10}a^{12}-\frac{81\cdots 91}{23\cdots 10}a^{11}+\frac{34\cdots 29}{23\cdots 10}a^{10}+\frac{86\cdots 97}{23\cdots 10}a^{9}-\frac{59\cdots 89}{15\cdots 10}a^{8}+\frac{18\cdots 93}{23\cdots 10}a^{7}-\frac{11\cdots 39}{23\cdots 10}a^{6}+\frac{71\cdots 03}{23\cdots 10}a^{5}-\frac{23\cdots 79}{23\cdots 10}a^{4}+\frac{10\cdots 75}{46\cdots 02}a^{3}+\frac{60\cdots 57}{46\cdots 02}a^{2}-\frac{40\cdots 47}{46\cdots 02}a+\frac{73\cdots 26}{23\cdots 01}$, $\frac{17\cdots 72}{57\cdots 25}a^{19}+\frac{14\cdots 91}{57\cdots 25}a^{18}-\frac{23\cdots 19}{11\cdots 50}a^{17}-\frac{82\cdots 09}{57\cdots 25}a^{16}+\frac{27\cdots 67}{11\cdots 50}a^{15}+\frac{10\cdots 34}{57\cdots 25}a^{14}+\frac{28\cdots 79}{23\cdots 10}a^{13}+\frac{90\cdots 11}{46\cdots 02}a^{12}+\frac{13\cdots 24}{23\cdots 01}a^{11}-\frac{77\cdots 81}{23\cdots 10}a^{10}+\frac{43\cdots 67}{23\cdots 10}a^{9}+\frac{14\cdots 41}{76\cdots 55}a^{8}+\frac{39\cdots 01}{23\cdots 10}a^{7}+\frac{22\cdots 37}{23\cdots 10}a^{6}+\frac{18\cdots 91}{11\cdots 05}a^{5}+\frac{53\cdots 03}{23\cdots 10}a^{4}+\frac{55\cdots 77}{46\cdots 02}a^{3}+\frac{37\cdots 05}{46\cdots 02}a^{2}+\frac{27\cdots 67}{46\cdots 02}a+\frac{29\cdots 27}{23\cdots 01}$, $\frac{10\cdots 17}{57\cdots 75}a^{19}-\frac{11\cdots 53}{11\cdots 50}a^{18}-\frac{73\cdots 54}{57\cdots 75}a^{17}+\frac{82\cdots 53}{11\cdots 50}a^{16}+\frac{59\cdots 03}{11\cdots 95}a^{15}+\frac{63\cdots 77}{11\cdots 95}a^{14}-\frac{13\cdots 27}{23\cdots 90}a^{13}+\frac{26\cdots 93}{23\cdots 90}a^{12}+\frac{28\cdots 24}{11\cdots 95}a^{11}+\frac{70\cdots 63}{23\cdots 90}a^{10}+\frac{29\cdots 69}{23\cdots 90}a^{9}-\frac{34\cdots 89}{76\cdots 45}a^{8}+\frac{21\cdots 57}{56\cdots 90}a^{7}-\frac{22\cdots 47}{23\cdots 90}a^{6}+\frac{10\cdots 16}{23\cdots 79}a^{5}+\frac{46\cdots 11}{46\cdots 58}a^{4}-\frac{66\cdots 98}{23\cdots 79}a^{3}+\frac{13\cdots 43}{23\cdots 79}a^{2}+\frac{16\cdots 80}{23\cdots 79}a-\frac{20\cdots 19}{46\cdots 58}$, $\frac{33\cdots 91}{11\cdots 50}a^{19}-\frac{60\cdots 69}{11\cdots 50}a^{18}-\frac{17\cdots 17}{11\cdots 50}a^{17}+\frac{11\cdots 29}{11\cdots 50}a^{16}+\frac{75\cdots 57}{23\cdots 10}a^{15}+\frac{15\cdots 43}{11\cdots 05}a^{14}-\frac{15\cdots 16}{11\cdots 05}a^{13}+\frac{30\cdots 12}{11\cdots 05}a^{12}-\frac{29\cdots 76}{11\cdots 05}a^{11}-\frac{21\cdots 00}{23\cdots 01}a^{10}+\frac{21\cdots 48}{11\cdots 05}a^{9}+\frac{12\cdots 13}{76\cdots 55}a^{8}+\frac{31\cdots 74}{28\cdots 05}a^{7}-\frac{70\cdots 38}{11\cdots 05}a^{6}+\frac{82\cdots 84}{23\cdots 01}a^{5}+\frac{47\cdots 89}{46\cdots 02}a^{4}-\frac{35\cdots 77}{46\cdots 02}a^{3}+\frac{17\cdots 61}{46\cdots 02}a^{2}-\frac{48\cdots 31}{46\cdots 02}a-\frac{32\cdots 83}{46\cdots 02}$, $\frac{16\cdots 94}{57\cdots 25}a^{19}+\frac{71\cdots 47}{11\cdots 50}a^{18}-\frac{55\cdots 08}{57\cdots 25}a^{17}-\frac{50\cdots 17}{11\cdots 50}a^{16}-\frac{20\cdots 91}{57\cdots 25}a^{15}+\frac{98\cdots 57}{11\cdots 50}a^{14}+\frac{74\cdots 39}{11\cdots 50}a^{13}+\frac{94\cdots 29}{23\cdots 10}a^{12}-\frac{18\cdots 73}{23\cdots 10}a^{11}-\frac{33\cdots 67}{23\cdots 10}a^{10}+\frac{35\cdots 53}{23\cdots 10}a^{9}-\frac{14\cdots 19}{15\cdots 10}a^{8}+\frac{35\cdots 29}{23\cdots 10}a^{7}-\frac{81\cdots 57}{23\cdots 10}a^{6}-\frac{28\cdots 57}{23\cdots 10}a^{5}-\frac{86\cdots 83}{23\cdots 10}a^{4}-\frac{81\cdots 38}{11\cdots 05}a^{3}-\frac{83\cdots 85}{46\cdots 02}a^{2}-\frac{14\cdots 01}{23\cdots 01}a-\frac{20\cdots 91}{46\cdots 02}$, $\frac{40\cdots 49}{11\cdots 50}a^{19}-\frac{24\cdots 51}{11\cdots 50}a^{18}-\frac{11\cdots 69}{57\cdots 25}a^{17}+\frac{53\cdots 07}{57\cdots 25}a^{16}+\frac{84\cdots 63}{14\cdots 25}a^{15}+\frac{16\cdots 21}{11\cdots 05}a^{14}-\frac{10\cdots 27}{11\cdots 50}a^{13}+\frac{23\cdots 71}{11\cdots 05}a^{12}-\frac{44\cdots 59}{11\cdots 05}a^{11}+\frac{31\cdots 71}{23\cdots 10}a^{10}+\frac{70\cdots 41}{23\cdots 01}a^{9}-\frac{53\cdots 59}{76\cdots 55}a^{8}+\frac{20\cdots 57}{23\cdots 10}a^{7}-\frac{74\cdots 18}{11\cdots 05}a^{6}+\frac{24\cdots 53}{11\cdots 05}a^{5}+\frac{20\cdots 20}{23\cdots 01}a^{4}-\frac{13\cdots 07}{23\cdots 10}a^{3}+\frac{94\cdots 31}{23\cdots 01}a^{2}-\frac{72\cdots 87}{46\cdots 02}a-\frac{30\cdots 68}{23\cdots 01}$
|
| |
| Regulator: | \( 31758563963704467000 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot 31758563963704467000 \cdot 5}{2\cdot\sqrt{83867218967598487041513866410602857358753681182861328125}}\cr\approx \mathstrut & 0.336948613568146 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.6125.1, 5.1.220762578125.3, 10.2.243680579501983642578125.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 40 |
| Degree 10 siblings: | deg 10, 10.0.819107899937967816162109375.1 |
| Degree 20 sibling: | deg 20 |
| Minimal sibling: | 10.0.819107899937967816162109375.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{5}$ | ${\href{/padicField/3.4.0.1}{4} }^{5}$ | R | R | ${\href{/padicField/11.5.0.1}{5} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{5}$ | ${\href{/padicField/17.4.0.1}{4} }^{5}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{5}$ | ${\href{/padicField/29.2.0.1}{2} }^{10}$ | ${\href{/padicField/31.10.0.1}{10} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{5}$ | R | ${\href{/padicField/43.4.0.1}{4} }^{5}$ | ${\href{/padicField/47.4.0.1}{4} }^{5}$ | ${\href{/padicField/53.4.0.1}{4} }^{5}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.1.20.31a4.25 | $x^{20} + 10 x^{12} + 20$ | $20$ | $1$ | $31$ | not computed | not computed |
|
\(7\)
| 7.2.2.2a1.1 | $x^{4} + 12 x^{3} + 42 x^{2} + 43 x + 9$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
| 7.4.2.4a1.2 | $x^{8} + 10 x^{6} + 8 x^{5} + 31 x^{4} + 40 x^{3} + 46 x^{2} + 24 x + 16$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
| 7.4.2.4a1.2 | $x^{8} + 10 x^{6} + 8 x^{5} + 31 x^{4} + 40 x^{3} + 46 x^{2} + 24 x + 16$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(41\)
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |