Properties

Label 20.4.770...125.2
Degree $20$
Signature $[4, 8]$
Discriminant $7.701\times 10^{57}$
Root discriminant \(784.02\)
Ramified primes $5,11,41$
Class number not computed
Class group not computed
Galois group $C_2\times F_5$ (as 20T9)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^19 - 60*x^18 + 340*x^17 + 1420*x^16 + 33985*x^15 - 200850*x^14 + 2429525*x^13 - 14548850*x^12 + 4035250*x^11 + 732177235*x^10 - 1773551650*x^9 + 62360222700*x^8 - 165461971925*x^7 + 2199112430850*x^6 + 1732196730925*x^5 + 3755155905000*x^4 + 324189057741500*x^3 - 66040638710750*x^2 + 1533110625113875*x + 13502138530056025)
 
Copy content gp:K = bnfinit(y^20 - 5*y^19 - 60*y^18 + 340*y^17 + 1420*y^16 + 33985*y^15 - 200850*y^14 + 2429525*y^13 - 14548850*y^12 + 4035250*y^11 + 732177235*y^10 - 1773551650*y^9 + 62360222700*y^8 - 165461971925*y^7 + 2199112430850*y^6 + 1732196730925*y^5 + 3755155905000*y^4 + 324189057741500*y^3 - 66040638710750*y^2 + 1533110625113875*y + 13502138530056025, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 5*x^19 - 60*x^18 + 340*x^17 + 1420*x^16 + 33985*x^15 - 200850*x^14 + 2429525*x^13 - 14548850*x^12 + 4035250*x^11 + 732177235*x^10 - 1773551650*x^9 + 62360222700*x^8 - 165461971925*x^7 + 2199112430850*x^6 + 1732196730925*x^5 + 3755155905000*x^4 + 324189057741500*x^3 - 66040638710750*x^2 + 1533110625113875*x + 13502138530056025);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 - 5*x^19 - 60*x^18 + 340*x^17 + 1420*x^16 + 33985*x^15 - 200850*x^14 + 2429525*x^13 - 14548850*x^12 + 4035250*x^11 + 732177235*x^10 - 1773551650*x^9 + 62360222700*x^8 - 165461971925*x^7 + 2199112430850*x^6 + 1732196730925*x^5 + 3755155905000*x^4 + 324189057741500*x^3 - 66040638710750*x^2 + 1533110625113875*x + 13502138530056025)
 

\( x^{20} - 5 x^{19} - 60 x^{18} + 340 x^{17} + 1420 x^{16} + 33985 x^{15} - 200850 x^{14} + \cdots + 13\!\cdots\!25 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $20$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[4, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(7700850521128818686981461752498528179712593555450439453125\) \(\medspace = 5^{31}\cdot 11^{10}\cdot 41^{16}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(784.02\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $5^{31/20}11^{1/2}41^{4/5}\approx 784.0196266547648$
Ramified primes:   \(5\), \(11\), \(41\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\Aut(K/\Q)$:   $C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{205}a^{10}+\frac{9}{41}a^{9}-\frac{13}{41}a^{8}-\frac{19}{41}a^{7}-\frac{17}{41}a^{6}+\frac{17}{41}a^{5}+\frac{19}{41}a^{4}+\frac{6}{41}a^{3}+\frac{5}{41}a^{2}+\frac{18}{41}a+\frac{13}{41}$, $\frac{1}{205}a^{11}-\frac{8}{41}a^{9}-\frac{8}{41}a^{8}+\frac{18}{41}a^{7}+\frac{3}{41}a^{6}-\frac{8}{41}a^{5}+\frac{12}{41}a^{4}-\frac{19}{41}a^{3}-\frac{2}{41}a^{2}-\frac{18}{41}a-\frac{11}{41}$, $\frac{1}{2050}a^{12}-\frac{181}{410}a^{9}+\frac{36}{205}a^{8}+\frac{93}{205}a^{7}-\frac{31}{82}a^{6}+\frac{20}{41}a^{5}-\frac{12}{41}a^{4}+\frac{23}{82}a^{3}-\frac{32}{205}a^{2}-\frac{7}{41}a-\frac{19}{82}$, $\frac{1}{2050}a^{13}-\frac{1}{410}a^{10}-\frac{14}{205}a^{9}-\frac{17}{205}a^{8}-\frac{7}{82}a^{7}+\frac{7}{41}a^{6}+\frac{1}{41}a^{5}-\frac{1}{82}a^{4}+\frac{3}{205}a^{3}-\frac{8}{41}a^{2}+\frac{23}{82}a-\frac{19}{41}$, $\frac{1}{6150}a^{14}+\frac{1}{1230}a^{11}+\frac{1}{615}a^{10}+\frac{1}{205}a^{9}-\frac{1}{82}a^{8}-\frac{55}{123}a^{7}-\frac{5}{123}a^{6}+\frac{1}{246}a^{5}+\frac{53}{615}a^{4}-\frac{19}{123}a^{3}-\frac{77}{246}a^{2}+\frac{28}{123}a+\frac{61}{123}$, $\frac{1}{6150}a^{15}-\frac{1}{6150}a^{12}+\frac{1}{615}a^{11}-\frac{143}{410}a^{9}-\frac{296}{615}a^{8}-\frac{298}{615}a^{7}+\frac{43}{246}a^{6}-\frac{187}{615}a^{5}-\frac{4}{123}a^{4}-\frac{5}{246}a^{3}+\frac{257}{615}a^{2}+\frac{49}{123}a+\frac{6}{41}$, $\frac{1}{6150}a^{16}-\frac{1}{6150}a^{13}+\frac{1}{6150}a^{12}-\frac{1}{410}a^{10}+\frac{527}{1230}a^{9}+\frac{293}{615}a^{8}-\frac{109}{1230}a^{7}+\frac{481}{1230}a^{6}-\frac{7}{123}a^{5}-\frac{59}{246}a^{4}-\frac{1}{30}a^{3}-\frac{292}{615}a^{2}-\frac{7}{41}a+\frac{17}{82}$, $\frac{1}{6150}a^{17}+\frac{1}{6150}a^{13}-\frac{1}{615}a^{11}+\frac{1}{1230}a^{10}+\frac{101}{615}a^{9}-\frac{122}{615}a^{8}-\frac{113}{410}a^{7}+\frac{16}{41}a^{6}+\frac{34}{123}a^{5}+\frac{67}{246}a^{4}+\frac{101}{205}a^{3}-\frac{53}{246}a^{2}-\frac{49}{246}a-\frac{50}{123}$, $\frac{1}{252150}a^{18}+\frac{1}{126075}a^{17}-\frac{3}{42025}a^{16}-\frac{17}{252150}a^{15}+\frac{3}{42025}a^{14}+\frac{28}{126075}a^{13}-\frac{19}{126075}a^{12}+\frac{47}{25215}a^{11}-\frac{7}{25215}a^{10}+\frac{11069}{25215}a^{9}+\frac{2401}{8405}a^{8}-\frac{518}{25215}a^{7}+\frac{10981}{25215}a^{6}+\frac{333}{8405}a^{5}-\frac{8876}{25215}a^{4}-\frac{3259}{50430}a^{3}+\frac{1316}{25215}a^{2}-\frac{690}{1681}a+\frac{2843}{10086}$, $\frac{1}{20\cdots 50}a^{19}-\frac{45\cdots 83}{10\cdots 75}a^{18}-\frac{28\cdots 09}{20\cdots 50}a^{17}+\frac{57\cdots 26}{10\cdots 75}a^{16}+\frac{11\cdots 13}{34\cdots 25}a^{15}-\frac{14\cdots 51}{20\cdots 50}a^{14}+\frac{16\cdots 87}{11\cdots 50}a^{13}+\frac{15\cdots 13}{69\cdots 50}a^{12}-\frac{10\cdots 89}{41\cdots 30}a^{11}+\frac{13\cdots 79}{27\cdots 02}a^{10}+\frac{45\cdots 09}{13\cdots 10}a^{9}+\frac{93\cdots 23}{83\cdots 06}a^{8}-\frac{31\cdots 31}{83\cdots 06}a^{7}-\frac{20\cdots 21}{13\cdots 10}a^{6}-\frac{38\cdots 69}{13\cdots 10}a^{5}-\frac{94\cdots 48}{20\cdots 15}a^{4}-\frac{11\cdots 41}{73\cdots 90}a^{3}+\frac{39\cdots 37}{20\cdots 15}a^{2}+\frac{40\cdots 59}{83\cdots 06}a-\frac{33\cdots 15}{27\cdots 02}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  not computed
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  not computed
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $11$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:  not computed
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot R \cdot h}{2\cdot\sqrt{7700850521128818686981461752498528179712593555450439453125}}\cr\mathstrut & \text{ some values not computed } \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^19 - 60*x^18 + 340*x^17 + 1420*x^16 + 33985*x^15 - 200850*x^14 + 2429525*x^13 - 14548850*x^12 + 4035250*x^11 + 732177235*x^10 - 1773551650*x^9 + 62360222700*x^8 - 165461971925*x^7 + 2199112430850*x^6 + 1732196730925*x^5 + 3755155905000*x^4 + 324189057741500*x^3 - 66040638710750*x^2 + 1533110625113875*x + 13502138530056025) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^20 - 5*x^19 - 60*x^18 + 340*x^17 + 1420*x^16 + 33985*x^15 - 200850*x^14 + 2429525*x^13 - 14548850*x^12 + 4035250*x^11 + 732177235*x^10 - 1773551650*x^9 + 62360222700*x^8 - 165461971925*x^7 + 2199112430850*x^6 + 1732196730925*x^5 + 3755155905000*x^4 + 324189057741500*x^3 - 66040638710750*x^2 + 1533110625113875*x + 13502138530056025, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 5*x^19 - 60*x^18 + 340*x^17 + 1420*x^16 + 33985*x^15 - 200850*x^14 + 2429525*x^13 - 14548850*x^12 + 4035250*x^11 + 732177235*x^10 - 1773551650*x^9 + 62360222700*x^8 - 165461971925*x^7 + 2199112430850*x^6 + 1732196730925*x^5 + 3755155905000*x^4 + 324189057741500*x^3 - 66040638710750*x^2 + 1533110625113875*x + 13502138530056025); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 - 5*x^19 - 60*x^18 + 340*x^17 + 1420*x^16 + 33985*x^15 - 200850*x^14 + 2429525*x^13 - 14548850*x^12 + 4035250*x^11 + 732177235*x^10 - 1773551650*x^9 + 62360222700*x^8 - 165461971925*x^7 + 2199112430850*x^6 + 1732196730925*x^5 + 3755155905000*x^4 + 324189057741500*x^3 - 66040638710750*x^2 + 1533110625113875*x + 13502138530056025); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times F_5$ (as 20T9):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 40
The 10 conjugacy class representatives for $C_2\times F_5$
Character table for $C_2\times F_5$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.15125.1, 5.1.220762578125.3, 10.2.243680579501983642578125.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 40
Degree 10 siblings: deg 10, 10.0.7849000201874793524169921875.1
Degree 20 sibling: deg 20
Minimal sibling: 10.0.7849000201874793524169921875.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{5}$ ${\href{/padicField/3.4.0.1}{4} }^{5}$ R ${\href{/padicField/7.4.0.1}{4} }^{5}$ R ${\href{/padicField/13.4.0.1}{4} }^{5}$ ${\href{/padicField/17.4.0.1}{4} }^{5}$ ${\href{/padicField/19.2.0.1}{2} }^{8}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ ${\href{/padicField/23.4.0.1}{4} }^{5}$ ${\href{/padicField/29.2.0.1}{2} }^{8}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ ${\href{/padicField/31.5.0.1}{5} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{5}$ R ${\href{/padicField/43.4.0.1}{4} }^{5}$ ${\href{/padicField/47.4.0.1}{4} }^{5}$ ${\href{/padicField/53.4.0.1}{4} }^{5}$ ${\href{/padicField/59.2.0.1}{2} }^{10}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.1.20.31a1.1$x^{20} + 10 x^{12} + 5$$20$$1$$31$not computednot computed
\(11\) Copy content Toggle raw display 11.5.2.5a1.2$x^{10} + 20 x^{7} + 18 x^{5} + 100 x^{4} + 180 x^{2} + 92$$2$$5$$5$$C_{10}$$$[\ ]_{2}^{5}$$
11.5.2.5a1.2$x^{10} + 20 x^{7} + 18 x^{5} + 100 x^{4} + 180 x^{2} + 92$$2$$5$$5$$C_{10}$$$[\ ]_{2}^{5}$$
\(41\) Copy content Toggle raw display 41.2.5.8a1.1$x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$$5$$2$$8$$C_{10}$$$[\ ]_{5}^{2}$$
41.2.5.8a1.1$x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$$5$$2$$8$$C_{10}$$$[\ ]_{5}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)