Properties

Label 11.5.2.5a1.2
Base \(\Q_{11}\)
Degree \(10\)
e \(2\)
f \(5\)
c \(5\)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{5} + 10 x^{2} + 9 )^{2} + 11$ Copy content Toggle raw display

Invariants

Base field: $\Q_{11}$
Degree $d$: $10$
Ramification index $e$: $2$
Residue field degree $f$: $5$
Discriminant exponent $c$: $5$
Discriminant root field: $\Q_{11}(\sqrt{11\cdot 2})$
Root number: $i$
$\Aut(K/\Q_{11})$ $=$$\Gal(K/\Q_{11})$: $C_{10}$
This field is Galois and abelian over $\Q_{11}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$161050 = (11^{ 5 } - 1)$

Intermediate fields

$\Q_{11}(\sqrt{11\cdot 2})$, 11.5.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:11.5.1.0a1.1 $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{5} + 10 x^{2} + 9 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 11 \) $\ \in\Q_{11}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $10$
Galois group: $C_{10}$ (as 10T1)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_1$
Galois unramified degree: $5$
Galois tame degree: $2$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.5$
Galois splitting model:$x^{10} - 5 x^{9} + 5 x^{8} + 90 x^{6} - 148 x^{5} + 610 x^{4} - 175 x^{3} + 2325 x^{2} - 1625 x + 5965$