Normalized defining polynomial
\( x^{20} - 8 x^{19} + 22 x^{18} + 6 x^{17} - 147 x^{16} + 198 x^{15} + 322 x^{14} - 948 x^{13} + 44 x^{12} + \cdots + 1 \)
Invariants
Degree: | $20$ |
| |
Signature: | $[0, 10]$ |
| |
Discriminant: |
\(5969915757478328440239161344\)
\(\medspace = 2^{30}\cdot 11^{18}\)
|
| |
Root discriminant: | \(24.48\) |
| |
Galois root discriminant: | $2^{31/16}11^{9/10}\approx 33.15118318510912$ | ||
Ramified primes: |
\(2\), \(11\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{13\cdots 59}a^{19}+\frac{28\cdots 93}{13\cdots 59}a^{18}+\frac{65\cdots 19}{13\cdots 59}a^{17}-\frac{34\cdots 82}{13\cdots 59}a^{16}-\frac{38\cdots 47}{13\cdots 59}a^{15}-\frac{15\cdots 27}{13\cdots 59}a^{14}+\frac{25\cdots 18}{13\cdots 59}a^{13}-\frac{19\cdots 94}{13\cdots 59}a^{12}-\frac{11\cdots 86}{13\cdots 59}a^{11}+\frac{22\cdots 49}{13\cdots 59}a^{10}+\frac{59\cdots 79}{13\cdots 59}a^{9}-\frac{37\cdots 45}{13\cdots 59}a^{8}+\frac{51\cdots 50}{13\cdots 59}a^{7}+\frac{51\cdots 49}{13\cdots 59}a^{6}+\frac{17\cdots 33}{58\cdots 33}a^{5}+\frac{56\cdots 84}{13\cdots 59}a^{4}-\frac{15\cdots 79}{13\cdots 59}a^{3}+\frac{44\cdots 73}{13\cdots 59}a^{2}+\frac{42\cdots 64}{13\cdots 59}a+\frac{17\cdots 02}{13\cdots 59}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $9$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{44\cdots 69}{13\cdots 59}a^{19}-\frac{33\cdots 72}{13\cdots 59}a^{18}+\frac{81\cdots 80}{13\cdots 59}a^{17}+\frac{66\cdots 25}{13\cdots 59}a^{16}-\frac{61\cdots 67}{13\cdots 59}a^{15}+\frac{56\cdots 94}{13\cdots 59}a^{14}+\frac{16\cdots 93}{13\cdots 59}a^{13}-\frac{32\cdots 84}{13\cdots 59}a^{12}-\frac{13\cdots 80}{13\cdots 59}a^{11}+\frac{73\cdots 61}{13\cdots 59}a^{10}-\frac{19\cdots 10}{13\cdots 59}a^{9}-\frac{79\cdots 09}{13\cdots 59}a^{8}+\frac{54\cdots 61}{13\cdots 59}a^{7}+\frac{42\cdots 44}{13\cdots 59}a^{6}-\frac{17\cdots 34}{58\cdots 33}a^{5}-\frac{28\cdots 40}{13\cdots 59}a^{4}+\frac{18\cdots 24}{13\cdots 59}a^{3}-\frac{10\cdots 99}{13\cdots 59}a^{2}+\frac{31\cdots 62}{13\cdots 59}a-\frac{28\cdots 15}{13\cdots 59}$, $\frac{41\cdots 29}{13\cdots 59}a^{19}-\frac{34\cdots 13}{13\cdots 59}a^{18}+\frac{10\cdots 84}{13\cdots 59}a^{17}+\frac{31\cdots 18}{13\cdots 59}a^{16}-\frac{64\cdots 87}{13\cdots 59}a^{15}+\frac{10\cdots 63}{13\cdots 59}a^{14}+\frac{12\cdots 03}{13\cdots 59}a^{13}-\frac{46\cdots 84}{13\cdots 59}a^{12}+\frac{10\cdots 39}{13\cdots 59}a^{11}+\frac{89\cdots 34}{13\cdots 59}a^{10}-\frac{76\cdots 83}{13\cdots 59}a^{9}-\frac{79\cdots 75}{13\cdots 59}a^{8}+\frac{12\cdots 75}{13\cdots 59}a^{7}+\frac{18\cdots 51}{13\cdots 59}a^{6}-\frac{39\cdots 59}{58\cdots 33}a^{5}+\frac{16\cdots 86}{13\cdots 59}a^{4}+\frac{34\cdots 05}{13\cdots 59}a^{3}-\frac{22\cdots 09}{13\cdots 59}a^{2}+\frac{50\cdots 35}{13\cdots 59}a-\frac{39\cdots 63}{13\cdots 59}$, $\frac{35\cdots 45}{13\cdots 59}a^{19}-\frac{27\cdots 04}{13\cdots 59}a^{18}+\frac{73\cdots 72}{13\cdots 59}a^{17}+\frac{32\cdots 70}{13\cdots 59}a^{16}-\frac{51\cdots 79}{13\cdots 59}a^{15}+\frac{62\cdots 39}{13\cdots 59}a^{14}+\frac{12\cdots 78}{13\cdots 59}a^{13}-\frac{31\cdots 32}{13\cdots 59}a^{12}-\frac{41\cdots 06}{13\cdots 59}a^{11}+\frac{67\cdots 46}{13\cdots 59}a^{10}-\frac{33\cdots 15}{13\cdots 59}a^{9}-\frac{70\cdots 76}{13\cdots 59}a^{8}+\frac{67\cdots 38}{13\cdots 59}a^{7}+\frac{33\cdots 68}{13\cdots 59}a^{6}-\frac{21\cdots 20}{58\cdots 33}a^{5}-\frac{22\cdots 87}{13\cdots 59}a^{4}+\frac{19\cdots 46}{13\cdots 59}a^{3}-\frac{11\cdots 17}{13\cdots 59}a^{2}+\frac{30\cdots 21}{13\cdots 59}a-\frac{26\cdots 07}{13\cdots 59}$, $\frac{91\cdots 42}{13\cdots 59}a^{19}-\frac{71\cdots 14}{13\cdots 59}a^{18}+\frac{18\cdots 69}{13\cdots 59}a^{17}+\frac{95\cdots 13}{13\cdots 59}a^{16}-\frac{13\cdots 00}{13\cdots 59}a^{15}+\frac{15\cdots 59}{13\cdots 59}a^{14}+\frac{32\cdots 96}{13\cdots 59}a^{13}-\frac{78\cdots 51}{13\cdots 59}a^{12}-\frac{12\cdots 04}{13\cdots 59}a^{11}+\frac{16\cdots 30}{13\cdots 59}a^{10}-\frac{81\cdots 78}{13\cdots 59}a^{9}-\frac{16\cdots 67}{13\cdots 59}a^{8}+\frac{16\cdots 59}{13\cdots 59}a^{7}+\frac{71\cdots 29}{13\cdots 59}a^{6}-\frac{52\cdots 88}{58\cdots 33}a^{5}+\frac{81\cdots 50}{13\cdots 59}a^{4}+\frac{50\cdots 97}{13\cdots 59}a^{3}-\frac{31\cdots 24}{13\cdots 59}a^{2}+\frac{79\cdots 30}{13\cdots 59}a-\frac{67\cdots 15}{13\cdots 59}$, $\frac{10\cdots 01}{58\cdots 33}a^{19}-\frac{10\cdots 46}{58\cdots 33}a^{18}+\frac{37\cdots 36}{58\cdots 33}a^{17}-\frac{23\cdots 94}{58\cdots 33}a^{16}-\frac{19\cdots 76}{58\cdots 33}a^{15}+\frac{46\cdots 16}{58\cdots 33}a^{14}+\frac{18\cdots 16}{58\cdots 33}a^{13}-\frac{18\cdots 96}{58\cdots 33}a^{12}+\frac{12\cdots 33}{58\cdots 33}a^{11}+\frac{30\cdots 10}{58\cdots 33}a^{10}-\frac{43\cdots 86}{58\cdots 33}a^{9}-\frac{20\cdots 64}{58\cdots 33}a^{8}+\frac{61\cdots 48}{58\cdots 33}a^{7}-\frac{61\cdots 90}{58\cdots 33}a^{6}-\frac{44\cdots 98}{58\cdots 33}a^{5}+\frac{13\cdots 32}{58\cdots 33}a^{4}+\frac{14\cdots 37}{58\cdots 33}a^{3}-\frac{10\cdots 40}{58\cdots 33}a^{2}+\frac{28\cdots 06}{58\cdots 33}a-\frac{34\cdots 98}{58\cdots 33}$, $\frac{79\cdots 18}{13\cdots 59}a^{19}-\frac{57\cdots 70}{13\cdots 59}a^{18}+\frac{13\cdots 42}{13\cdots 59}a^{17}+\frac{15\cdots 23}{13\cdots 59}a^{16}-\frac{10\cdots 41}{13\cdots 59}a^{15}+\frac{74\cdots 37}{13\cdots 59}a^{14}+\frac{33\cdots 16}{13\cdots 59}a^{13}-\frac{52\cdots 44}{13\cdots 59}a^{12}-\frac{41\cdots 04}{13\cdots 59}a^{11}+\frac{13\cdots 19}{13\cdots 59}a^{10}+\frac{17\cdots 81}{13\cdots 59}a^{9}-\frac{16\cdots 87}{13\cdots 59}a^{8}+\frac{58\cdots 51}{13\cdots 59}a^{7}+\frac{11\cdots 31}{13\cdots 59}a^{6}-\frac{23\cdots 75}{58\cdots 33}a^{5}-\frac{40\cdots 60}{13\cdots 59}a^{4}+\frac{30\cdots 93}{13\cdots 59}a^{3}-\frac{50\cdots 02}{13\cdots 59}a^{2}-\frac{26\cdots 18}{13\cdots 59}a+\frac{13\cdots 22}{13\cdots 59}$, $\frac{70\cdots 25}{13\cdots 59}a^{19}-\frac{55\cdots 07}{13\cdots 59}a^{18}+\frac{14\cdots 86}{13\cdots 59}a^{17}+\frac{70\cdots 44}{13\cdots 59}a^{16}-\frac{10\cdots 36}{13\cdots 59}a^{15}+\frac{11\cdots 27}{13\cdots 59}a^{14}+\frac{25\cdots 13}{13\cdots 59}a^{13}-\frac{62\cdots 15}{13\cdots 59}a^{12}-\frac{89\cdots 55}{13\cdots 59}a^{11}+\frac{13\cdots 63}{13\cdots 59}a^{10}-\frac{65\cdots 75}{13\cdots 59}a^{9}-\frac{13\cdots 06}{13\cdots 59}a^{8}+\frac{13\cdots 55}{13\cdots 59}a^{7}+\frac{62\cdots 00}{13\cdots 59}a^{6}-\frac{42\cdots 88}{58\cdots 33}a^{5}+\frac{68\cdots 85}{13\cdots 59}a^{4}+\frac{41\cdots 45}{13\cdots 59}a^{3}-\frac{22\cdots 16}{13\cdots 59}a^{2}+\frac{44\cdots 18}{13\cdots 59}a-\frac{24\cdots 77}{13\cdots 59}$, $\frac{76\cdots 72}{13\cdots 59}a^{19}-\frac{60\cdots 84}{13\cdots 59}a^{18}+\frac{16\cdots 37}{13\cdots 59}a^{17}+\frac{64\cdots 42}{13\cdots 59}a^{16}-\frac{11\cdots 39}{13\cdots 59}a^{15}+\frac{13\cdots 93}{13\cdots 59}a^{14}+\frac{26\cdots 37}{13\cdots 59}a^{13}-\frac{69\cdots 12}{13\cdots 59}a^{12}-\frac{46\cdots 36}{13\cdots 59}a^{11}+\frac{14\cdots 41}{13\cdots 59}a^{10}-\frac{81\cdots 60}{13\cdots 59}a^{9}-\frac{14\cdots 82}{13\cdots 59}a^{8}+\frac{15\cdots 36}{13\cdots 59}a^{7}+\frac{57\cdots 05}{13\cdots 59}a^{6}-\frac{48\cdots 19}{58\cdots 33}a^{5}+\frac{92\cdots 16}{13\cdots 59}a^{4}+\frac{44\cdots 93}{13\cdots 59}a^{3}-\frac{28\cdots 31}{13\cdots 59}a^{2}+\frac{73\cdots 17}{13\cdots 59}a-\frac{74\cdots 73}{13\cdots 59}$, $\frac{10\cdots 67}{13\cdots 59}a^{19}-\frac{84\cdots 52}{13\cdots 59}a^{18}+\frac{23\cdots 49}{13\cdots 59}a^{17}+\frac{71\cdots 16}{13\cdots 59}a^{16}-\frac{15\cdots 41}{13\cdots 59}a^{15}+\frac{20\cdots 15}{13\cdots 59}a^{14}+\frac{35\cdots 34}{13\cdots 59}a^{13}-\frac{99\cdots 45}{13\cdots 59}a^{12}+\frac{12\cdots 70}{13\cdots 59}a^{11}+\frac{20\cdots 50}{13\cdots 59}a^{10}-\frac{13\cdots 51}{13\cdots 59}a^{9}-\frac{19\cdots 37}{13\cdots 59}a^{8}+\frac{23\cdots 90}{13\cdots 59}a^{7}+\frac{64\cdots 51}{13\cdots 59}a^{6}-\frac{72\cdots 60}{58\cdots 33}a^{5}+\frac{24\cdots 81}{13\cdots 59}a^{4}+\frac{64\cdots 81}{13\cdots 59}a^{3}-\frac{44\cdots 40}{13\cdots 59}a^{2}+\frac{12\cdots 92}{13\cdots 59}a-\frac{12\cdots 60}{13\cdots 59}$
|
| |
Regulator: | \( 159636.716542 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 159636.716542 \cdot 2}{2\cdot\sqrt{5969915757478328440239161344}}\cr\approx \mathstrut & 0.198128690295 \end{aligned}\]
Galois group
$C_2^5:C_{10}$ (as 20T74):
A solvable group of order 320 |
The 32 conjugacy class representatives for $C_2^5:C_{10}$ |
Character table for $C_2^5:C_{10}$ |
Intermediate fields
\(\Q(\zeta_{11})^+\), 10.4.2414538435584.1, 10.2.2414538435584.1, 10.4.219503494144.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 20 siblings: | data not computed |
Degree 40 siblings: | data not computed |
Arithmetically equivalent siblings: | data not computed |
Minimal sibling: | 20.8.5969915757478328440239161344.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.10.0.1}{10} }^{2}$ | ${\href{/padicField/5.5.0.1}{5} }^{4}$ | ${\href{/padicField/7.10.0.1}{10} }^{2}$ | R | ${\href{/padicField/13.10.0.1}{10} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }^{2}$ | ${\href{/padicField/19.10.0.1}{10} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | ${\href{/padicField/29.10.0.1}{10} }^{2}$ | ${\href{/padicField/31.10.0.1}{10} }^{2}$ | ${\href{/padicField/37.5.0.1}{5} }^{4}$ | ${\href{/padicField/41.10.0.1}{10} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{8}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.10.0.1}{10} }^{2}$ | ${\href{/padicField/53.5.0.1}{5} }^{4}$ | ${\href{/padicField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.5.4.30a10.2 | $x^{20} + 6 x^{17} + 6 x^{15} + 12 x^{14} + 24 x^{12} + 10 x^{11} + 14 x^{10} + 30 x^{9} + 3 x^{8} + 34 x^{7} + 12 x^{6} + 14 x^{5} + 20 x^{4} + 16 x^{2} + 4 x + 7$ | $4$ | $5$ | $30$ | 20T74 | not computed |
\(11\)
| 11.2.10.18a1.2 | $x^{20} + 70 x^{19} + 2225 x^{18} + 42420 x^{17} + 539670 x^{16} + 4821684 x^{15} + 31004730 x^{14} + 144683280 x^{13} + 488310165 x^{12} + 1177567510 x^{11} + 1996241653 x^{10} + 2355135020 x^{9} + 1953240660 x^{8} + 1157466240 x^{7} + 496075680 x^{6} + 154293888 x^{5} + 34538880 x^{4} + 5429760 x^{3} + 569600 x^{2} + 35840 x + 1035$ | $10$ | $2$ | $18$ | 20T3 | $$[\ ]_{10}^{2}$$ |