Properties

Label 20.0.389...376.1
Degree $20$
Signature $[0, 10]$
Discriminant $3.898\times 10^{34}$
Root discriminant \(53.65\)
Ramified primes $2,3,131$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $D_5^2.D_4$ (as 20T157)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^20 + 6*x^18 + 141*x^16 - 200*x^15 + 1128*x^14 + 12*x^12 + 13488*x^11 + 5688*x^10 + 12432*x^9 + 30588*x^8 + 53328*x^7 + 258288*x^6 + 128320*x^5 - 191676*x^4 + 272160*x^3 + 445944*x^2 + 38880*x + 26644)
 
Copy content gp:K = bnfinit(y^20 + 6*y^18 + 141*y^16 - 200*y^15 + 1128*y^14 + 12*y^12 + 13488*y^11 + 5688*y^10 + 12432*y^9 + 30588*y^8 + 53328*y^7 + 258288*y^6 + 128320*y^5 - 191676*y^4 + 272160*y^3 + 445944*y^2 + 38880*y + 26644, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 + 6*x^18 + 141*x^16 - 200*x^15 + 1128*x^14 + 12*x^12 + 13488*x^11 + 5688*x^10 + 12432*x^9 + 30588*x^8 + 53328*x^7 + 258288*x^6 + 128320*x^5 - 191676*x^4 + 272160*x^3 + 445944*x^2 + 38880*x + 26644);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 + 6*x^18 + 141*x^16 - 200*x^15 + 1128*x^14 + 12*x^12 + 13488*x^11 + 5688*x^10 + 12432*x^9 + 30588*x^8 + 53328*x^7 + 258288*x^6 + 128320*x^5 - 191676*x^4 + 272160*x^3 + 445944*x^2 + 38880*x + 26644)
 

\( x^{20} + 6 x^{18} + 141 x^{16} - 200 x^{15} + 1128 x^{14} + 12 x^{12} + 13488 x^{11} + 5688 x^{10} + \cdots + 26644 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $20$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 10]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(38975682627981862469140631179493376\) \(\medspace = 2^{63}\cdot 3^{15}\cdot 131^{4}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(53.65\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{27/8}3^{3/4}131^{1/2}\approx 270.67791607719977$
Ramified primes:   \(2\), \(3\), \(131\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{6}) \)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  4.0.13824.1

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4}a^{10}-\frac{1}{2}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{12}-\frac{1}{2}a^{9}-\frac{1}{8}a^{8}-\frac{1}{2}a^{6}-\frac{1}{4}a^{4}+\frac{1}{4}$, $\frac{1}{8}a^{13}-\frac{1}{8}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{4}a^{5}+\frac{1}{4}a$, $\frac{1}{16}a^{14}+\frac{1}{16}a^{10}-\frac{3}{8}a^{8}-\frac{1}{8}a^{6}-\frac{1}{2}a^{5}-\frac{1}{8}a^{2}+\frac{1}{4}$, $\frac{1}{16}a^{15}+\frac{1}{16}a^{11}-\frac{3}{8}a^{9}-\frac{1}{8}a^{7}-\frac{1}{2}a^{6}-\frac{1}{8}a^{3}+\frac{1}{4}a$, $\frac{1}{16}a^{16}-\frac{1}{16}a^{12}-\frac{1}{8}a^{10}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}+\frac{1}{8}a^{4}-\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{16}a^{17}-\frac{1}{16}a^{13}-\frac{1}{8}a^{11}-\frac{1}{4}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}+\frac{1}{8}a^{5}-\frac{1}{4}a^{3}+\frac{1}{4}a$, $\frac{1}{6288}a^{18}+\frac{157}{6288}a^{17}+\frac{5}{262}a^{16}+\frac{167}{6288}a^{15}+\frac{185}{6288}a^{14}+\frac{229}{6288}a^{13}+\frac{157}{3144}a^{12}-\frac{407}{6288}a^{11}+\frac{277}{3144}a^{10}-\frac{623}{1572}a^{9}+\frac{659}{1572}a^{8}+\frac{1241}{3144}a^{7}-\frac{821}{3144}a^{6}+\frac{1259}{3144}a^{5}-\frac{271}{1572}a^{4}+\frac{523}{3144}a^{3}+\frac{103}{262}a^{2}-\frac{761}{1572}a+\frac{179}{786}$, $\frac{1}{42\cdots 96}a^{19}+\frac{95\cdots 20}{26\cdots 81}a^{18}-\frac{15\cdots 13}{70\cdots 16}a^{17}-\frac{54\cdots 19}{42\cdots 96}a^{16}-\frac{24\cdots 49}{26\cdots 81}a^{15}+\frac{43\cdots 31}{42\cdots 96}a^{14}+\frac{11\cdots 63}{21\cdots 48}a^{13}-\frac{23\cdots 97}{42\cdots 96}a^{12}+\frac{40\cdots 61}{42\cdots 96}a^{11}-\frac{15\cdots 79}{42\cdots 96}a^{10}-\frac{44\cdots 43}{10\cdots 24}a^{9}-\frac{10\cdots 89}{21\cdots 48}a^{8}+\frac{69\cdots 75}{26\cdots 81}a^{7}-\frac{99\cdots 59}{21\cdots 48}a^{6}+\frac{54\cdots 69}{10\cdots 24}a^{5}-\frac{21\cdots 79}{21\cdots 48}a^{4}-\frac{29\cdots 81}{70\cdots 16}a^{3}+\frac{26\cdots 23}{21\cdots 48}a^{2}+\frac{18\cdots 85}{52\cdots 62}a+\frac{49\cdots 73}{17\cdots 54}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $9$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{33\cdots 19}{53\cdots 32}a^{19}-\frac{23\cdots 53}{53\cdots 32}a^{18}+\frac{11\cdots 59}{26\cdots 16}a^{17}-\frac{16\cdots 58}{66\cdots 29}a^{16}+\frac{48\cdots 61}{53\cdots 32}a^{15}-\frac{16\cdots 29}{88\cdots 72}a^{14}+\frac{15\cdots 51}{17\cdots 44}a^{13}-\frac{12\cdots 60}{22\cdots 43}a^{12}+\frac{13\cdots 05}{44\cdots 86}a^{11}+\frac{15\cdots 13}{17\cdots 44}a^{10}-\frac{48\cdots 83}{17\cdots 44}a^{9}+\frac{79\cdots 31}{88\cdots 72}a^{8}+\frac{15\cdots 27}{88\cdots 72}a^{7}+\frac{92\cdots 15}{44\cdots 86}a^{6}+\frac{12\cdots 33}{88\cdots 72}a^{5}-\frac{19\cdots 55}{66\cdots 29}a^{4}-\frac{15\cdots 77}{13\cdots 58}a^{3}+\frac{79\cdots 99}{26\cdots 16}a^{2}+\frac{22\cdots 69}{26\cdots 16}a+\frac{60\cdots 87}{13\cdots 58}$, $\frac{24\cdots 81}{26\cdots 81}a^{19}+\frac{24\cdots 45}{42\cdots 96}a^{18}+\frac{43\cdots 95}{26\cdots 81}a^{17}+\frac{20\cdots 59}{42\cdots 96}a^{16}+\frac{34\cdots 65}{42\cdots 96}a^{15}+\frac{78\cdots 79}{10\cdots 72}a^{14}-\frac{63\cdots 83}{70\cdots 16}a^{13}+\frac{13\cdots 25}{14\cdots 32}a^{12}-\frac{16\cdots 97}{14\cdots 32}a^{11}+\frac{26\cdots 21}{70\cdots 16}a^{10}+\frac{12\cdots 23}{35\cdots 08}a^{9}+\frac{65\cdots 25}{17\cdots 54}a^{8}+\frac{11\cdots 29}{70\cdots 16}a^{7}-\frac{50\cdots 09}{70\cdots 16}a^{6}+\frac{22\cdots 11}{35\cdots 08}a^{5}+\frac{19\cdots 25}{21\cdots 48}a^{4}-\frac{22\cdots 17}{21\cdots 48}a^{3}+\frac{23\cdots 05}{52\cdots 62}a^{2}-\frac{11\cdots 90}{26\cdots 81}a-\frac{10\cdots 15}{10\cdots 24}$, $\frac{67\cdots 05}{10\cdots 24}a^{19}-\frac{90\cdots 59}{42\cdots 96}a^{18}+\frac{94\cdots 51}{10\cdots 24}a^{17}-\frac{95\cdots 29}{42\cdots 96}a^{16}+\frac{57\cdots 35}{42\cdots 96}a^{15}-\frac{72\cdots 91}{14\cdots 32}a^{14}+\frac{17\cdots 01}{87\cdots 27}a^{13}-\frac{70\cdots 83}{14\cdots 32}a^{12}+\frac{14\cdots 17}{14\cdots 32}a^{11}-\frac{67\cdots 87}{70\cdots 16}a^{10}+\frac{24\cdots 65}{70\cdots 16}a^{9}+\frac{39\cdots 91}{17\cdots 54}a^{8}-\frac{35\cdots 33}{70\cdots 16}a^{7}+\frac{81\cdots 99}{70\cdots 16}a^{6}-\frac{44\cdots 51}{87\cdots 27}a^{5}-\frac{16\cdots 91}{21\cdots 48}a^{4}+\frac{62\cdots 13}{21\cdots 48}a^{3}-\frac{16\cdots 83}{52\cdots 62}a^{2}+\frac{25\cdots 03}{10\cdots 24}a-\frac{22\cdots 07}{10\cdots 24}$, $\frac{45\cdots 99}{10\cdots 24}a^{19}+\frac{43\cdots 03}{26\cdots 81}a^{18}+\frac{94\cdots 17}{42\cdots 96}a^{17}+\frac{45\cdots 79}{42\cdots 96}a^{16}+\frac{23\cdots 55}{42\cdots 96}a^{15}+\frac{53\cdots 25}{35\cdots 08}a^{14}+\frac{10\cdots 67}{14\cdots 32}a^{13}+\frac{29\cdots 31}{14\cdots 32}a^{12}-\frac{17\cdots 29}{14\cdots 32}a^{11}+\frac{55\cdots 19}{70\cdots 16}a^{10}+\frac{65\cdots 83}{35\cdots 08}a^{9}+\frac{48\cdots 03}{35\cdots 08}a^{8}+\frac{23\cdots 15}{70\cdots 16}a^{7}+\frac{51\cdots 91}{17\cdots 54}a^{6}+\frac{12\cdots 61}{70\cdots 16}a^{5}+\frac{78\cdots 43}{21\cdots 48}a^{4}+\frac{25\cdots 55}{21\cdots 48}a^{3}-\frac{34\cdots 15}{10\cdots 24}a^{2}-\frac{13\cdots 97}{10\cdots 24}a+\frac{31\cdots 15}{10\cdots 24}$, $\frac{11\cdots 47}{21\cdots 48}a^{19}-\frac{12\cdots 43}{52\cdots 62}a^{18}+\frac{33\cdots 39}{42\cdots 96}a^{17}-\frac{91\cdots 53}{42\cdots 96}a^{16}+\frac{49\cdots 85}{42\cdots 96}a^{15}-\frac{35\cdots 43}{70\cdots 16}a^{14}+\frac{26\cdots 35}{14\cdots 32}a^{13}-\frac{68\cdots 49}{14\cdots 32}a^{12}+\frac{12\cdots 83}{14\cdots 32}a^{11}-\frac{12\cdots 71}{17\cdots 54}a^{10}-\frac{40\cdots 49}{70\cdots 16}a^{9}+\frac{19\cdots 79}{87\cdots 27}a^{8}-\frac{30\cdots 03}{70\cdots 16}a^{7}+\frac{27\cdots 79}{35\cdots 08}a^{6}-\frac{38\cdots 87}{70\cdots 16}a^{5}-\frac{41\cdots 81}{21\cdots 48}a^{4}+\frac{58\cdots 35}{21\cdots 48}a^{3}-\frac{23\cdots 13}{52\cdots 62}a^{2}-\frac{11\cdots 15}{52\cdots 62}a+\frac{66\cdots 09}{10\cdots 24}$, $\frac{32\cdots 57}{42\cdots 96}a^{19}-\frac{10\cdots 47}{42\cdots 96}a^{18}+\frac{22\cdots 67}{42\cdots 96}a^{17}-\frac{36\cdots 69}{21\cdots 48}a^{16}+\frac{48\cdots 23}{42\cdots 96}a^{15}-\frac{27\cdots 69}{14\cdots 32}a^{14}+\frac{14\cdots 93}{14\cdots 32}a^{13}-\frac{35\cdots 79}{70\cdots 16}a^{12}+\frac{56\cdots 97}{70\cdots 16}a^{11}+\frac{64\cdots 83}{70\cdots 16}a^{10}+\frac{16\cdots 50}{87\cdots 27}a^{9}+\frac{73\cdots 99}{70\cdots 16}a^{8}+\frac{12\cdots 51}{70\cdots 16}a^{7}+\frac{26\cdots 77}{70\cdots 16}a^{6}+\frac{11\cdots 67}{70\cdots 16}a^{5}+\frac{22\cdots 15}{10\cdots 24}a^{4}-\frac{81\cdots 85}{52\cdots 62}a^{3}+\frac{10\cdots 69}{52\cdots 62}a^{2}+\frac{25\cdots 89}{10\cdots 24}a-\frac{65\cdots 55}{10\cdots 24}$, $\frac{45\cdots 81}{42\cdots 96}a^{19}+\frac{26\cdots 31}{10\cdots 24}a^{18}+\frac{13\cdots 81}{21\cdots 48}a^{17}+\frac{86\cdots 17}{52\cdots 62}a^{16}+\frac{63\cdots 41}{42\cdots 96}a^{15}-\frac{12\cdots 97}{70\cdots 16}a^{14}+\frac{78\cdots 87}{70\cdots 16}a^{13}+\frac{27\cdots 67}{70\cdots 16}a^{12}-\frac{39\cdots 87}{70\cdots 16}a^{11}+\frac{10\cdots 27}{70\cdots 16}a^{10}+\frac{54\cdots 55}{70\cdots 16}a^{9}+\frac{94\cdots 21}{70\cdots 16}a^{8}+\frac{23\cdots 69}{70\cdots 16}a^{7}+\frac{18\cdots 39}{35\cdots 08}a^{6}+\frac{10\cdots 19}{35\cdots 08}a^{5}+\frac{17\cdots 35}{10\cdots 24}a^{4}-\frac{73\cdots 35}{26\cdots 81}a^{3}+\frac{31\cdots 31}{10\cdots 24}a^{2}+\frac{59\cdots 41}{10\cdots 24}a+\frac{30\cdots 73}{10\cdots 24}$, $\frac{26\cdots 41}{35\cdots 08}a^{19}-\frac{40\cdots 77}{10\cdots 24}a^{18}+\frac{12\cdots 47}{26\cdots 81}a^{17}-\frac{89\cdots 43}{35\cdots 08}a^{16}+\frac{22\cdots 45}{21\cdots 48}a^{15}-\frac{43\cdots 65}{21\cdots 48}a^{14}+\frac{25\cdots 46}{26\cdots 81}a^{13}-\frac{11\cdots 75}{21\cdots 48}a^{12}+\frac{88\cdots 39}{21\cdots 48}a^{11}+\frac{21\cdots 87}{21\cdots 48}a^{10}-\frac{18\cdots 51}{10\cdots 24}a^{9}+\frac{29\cdots 05}{21\cdots 48}a^{8}+\frac{14\cdots 47}{10\cdots 24}a^{7}+\frac{36\cdots 79}{10\cdots 24}a^{6}+\frac{48\cdots 67}{26\cdots 81}a^{5}-\frac{65\cdots 73}{10\cdots 24}a^{4}-\frac{77\cdots 03}{10\cdots 24}a^{3}+\frac{80\cdots 43}{35\cdots 08}a^{2}+\frac{80\cdots 97}{52\cdots 62}a+\frac{67\cdots 95}{10\cdots 24}$, $\frac{38\cdots 55}{21\cdots 48}a^{19}+\frac{27\cdots 53}{14\cdots 32}a^{18}+\frac{12\cdots 35}{42\cdots 96}a^{17}-\frac{12\cdots 07}{42\cdots 96}a^{16}+\frac{24\cdots 47}{17\cdots 54}a^{15}-\frac{10\cdots 31}{42\cdots 96}a^{14}+\frac{40\cdots 85}{42\cdots 96}a^{13}+\frac{24\cdots 13}{42\cdots 96}a^{12}-\frac{14\cdots 59}{26\cdots 81}a^{11}+\frac{33\cdots 27}{21\cdots 48}a^{10}+\frac{60\cdots 49}{10\cdots 24}a^{9}+\frac{67\cdots 39}{10\cdots 24}a^{8}-\frac{48\cdots 01}{26\cdots 81}a^{7}-\frac{28\cdots 97}{21\cdots 48}a^{6}-\frac{77\cdots 49}{21\cdots 48}a^{5}+\frac{96\cdots 97}{70\cdots 16}a^{4}-\frac{33\cdots 88}{26\cdots 81}a^{3}-\frac{59\cdots 13}{26\cdots 81}a^{2}-\frac{67\cdots 55}{35\cdots 08}a-\frac{14\cdots 63}{10\cdots 24}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3152563834.73 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 3152563834.73 \cdot 2}{2\cdot\sqrt{38975682627981862469140631179493376}}\cr\approx \mathstrut & 1.53131912870 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^20 + 6*x^18 + 141*x^16 - 200*x^15 + 1128*x^14 + 12*x^12 + 13488*x^11 + 5688*x^10 + 12432*x^9 + 30588*x^8 + 53328*x^7 + 258288*x^6 + 128320*x^5 - 191676*x^4 + 272160*x^3 + 445944*x^2 + 38880*x + 26644) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^20 + 6*x^18 + 141*x^16 - 200*x^15 + 1128*x^14 + 12*x^12 + 13488*x^11 + 5688*x^10 + 12432*x^9 + 30588*x^8 + 53328*x^7 + 258288*x^6 + 128320*x^5 - 191676*x^4 + 272160*x^3 + 445944*x^2 + 38880*x + 26644, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 + 6*x^18 + 141*x^16 - 200*x^15 + 1128*x^14 + 12*x^12 + 13488*x^11 + 5688*x^10 + 12432*x^9 + 30588*x^8 + 53328*x^7 + 258288*x^6 + 128320*x^5 - 191676*x^4 + 272160*x^3 + 445944*x^2 + 38880*x + 26644); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 + 6*x^18 + 141*x^16 - 200*x^15 + 1128*x^14 + 12*x^12 + 13488*x^11 + 5688*x^10 + 12432*x^9 + 30588*x^8 + 53328*x^7 + 258288*x^6 + 128320*x^5 - 191676*x^4 + 272160*x^3 + 445944*x^2 + 38880*x + 26644); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_5^2.D_4$ (as 20T157):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 800
The 26 conjugacy class representatives for $D_5^2.D_4$
Character table for $D_5^2.D_4$

Intermediate fields

\(\Q(\sqrt{3}) \), 4.0.13824.1, 10.6.279852217270272.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed
Arithmetically equivalent siblings: data not computed
Minimal sibling: 20.0.38975682627981862469140631179493376.2

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.4.0.1}{4} }^{4}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ $20$ ${\href{/padicField/11.4.0.1}{4} }^{4}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ ${\href{/padicField/13.4.0.1}{4} }^{4}{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{5}$ ${\href{/padicField/19.2.0.1}{2} }^{10}$ ${\href{/padicField/23.5.0.1}{5} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.2.0.1}{2} }^{10}$ ${\href{/padicField/31.4.0.1}{4} }^{5}$ ${\href{/padicField/37.4.0.1}{4} }^{4}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ $20$ ${\href{/padicField/43.4.0.1}{4} }^{4}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ ${\href{/padicField/47.5.0.1}{5} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.4.0.1}{4} }^{4}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.4.9a1.5$x^{4} + 2 x^{2} + 6$$4$$1$$9$$D_{4}$$$[2, 3, \frac{7}{2}]$$
2.1.16.54o1.296$x^{16} + 4 x^{14} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 14$$16$$1$$54$16T54$$[2, 3, \frac{7}{2}, 4]^{2}$$
\(3\) Copy content Toggle raw display 3.1.4.3a1.2$x^{4} + 6$$4$$1$$3$$D_{4}$$$[\ ]_{4}^{2}$$
3.4.4.12a1.3$x^{16} + 8 x^{15} + 24 x^{14} + 32 x^{13} + 24 x^{12} + 48 x^{11} + 96 x^{10} + 64 x^{9} + 24 x^{8} + 96 x^{7} + 96 x^{6} + 32 x^{4} + 64 x^{3} + 19$$4$$4$$12$$C_4:C_4$$$[\ ]_{4}^{4}$$
\(131\) Copy content Toggle raw display $\Q_{131}$$x + 129$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{131}$$x + 129$$1$$1$$0$Trivial$$[\ ]$$
131.2.1.0a1.1$x^{2} + 127 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
131.4.1.0a1.1$x^{4} + 9 x^{2} + 109 x + 2$$1$$4$$0$$C_4$$$[\ ]^{4}$$
131.2.2.2a1.1$x^{4} + 254 x^{3} + 16133 x^{2} + 639 x + 4$$2$$2$$2$$C_4$$$[\ ]_{2}^{2}$$
131.2.2.2a1.1$x^{4} + 254 x^{3} + 16133 x^{2} + 639 x + 4$$2$$2$$2$$C_4$$$[\ ]_{2}^{2}$$
131.4.1.0a1.1$x^{4} + 9 x^{2} + 109 x + 2$$1$$4$$0$$C_4$$$[\ ]^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)