Defining polynomial
|
\(x^{16} + 4 x^{14} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 14\)
|
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$: | $16$ |
| Ramification index $e$: | $16$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $54$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $-1$ |
| $\Aut(K/\Q_{2})$: | $C_2\times C_4$ |
| This field is not Galois over $\Q_{2}.$ | |
| Visible Artin slopes: | $[2, 3, \frac{7}{2}, 4]$ |
| Visible Swan slopes: | $[1,2,\frac{5}{2},3]$ |
| Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}, \frac{39}{16}\rangle$ |
| Rams: | $(1, 3, 5, 9)$ |
| Jump set: | $[1, 2, 4, 8, 32]$ |
| Roots of unity: | $2$ |
Intermediate fields
| $\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{-2\cdot 5})$, $\Q_{2}(\sqrt{2})$, 2.1.4.10a1.8 x2, 2.1.4.9a1.5 x2, 2.1.4.8b1.6, 2.1.8.22d1.22, 2.1.8.24c1.55, 2.1.8.24c1.60 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: |
\( x^{16} + 4 x^{14} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 14 \)
|
Ramification polygon
| Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ |
| Associated inertia: | $1$,$1$,$1$,$1$ |
| Indices of inseparability: | $[39, 30, 20, 8, 0]$ |
Invariants of the Galois closure
| Galois degree: | $32$ |
| Galois group: | $C_2^2.D_4$ (as 16T54) |
| Inertia group: | $C_4:C_4$ (as 16T8) |
| Wild inertia group: | $C_4:C_4$ |
| Galois unramified degree: | $2$ |
| Galois tame degree: | $1$ |
| Galois Artin slopes: | $[2, 3, \frac{7}{2}, 4]$ |
| Galois Swan slopes: | $[1,2,\frac{5}{2},3]$ |
| Galois mean slope: | $3.375$ |
| Galois splitting model: | $x^{16} - 8 x^{15} + 36 x^{14} - 96 x^{13} + 152 x^{12} - 96 x^{11} - 136 x^{10} + 328 x^{9} - 222 x^{8} + 104 x^{7} + 344 x^{6} + 768 x^{5} + 1652 x^{4} + 672 x^{3} - 192 x^{2} - 16 x + 46$ |