Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $54$ | |
| Group : | $(C_2^2\times C_4):C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,15,10,7)(2,16,9,8)(3,13,12,6)(4,14,11,5), (1,7,2,8)(3,14,4,13)(5,11,6,12)(9,16,10,15), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,15)(14,16) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 16: $D_4\times C_2$, $Q_8:C_2$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Low degree siblings
16T37, 16T54, 32T23Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,11)( 4,12)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5, 6)( 7,15)( 8,16)( 9,10)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 9,11)( 2, 4,10,12)( 5, 7,13,16)( 6, 8,14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 9,13)( 2, 6,10,14)( 3, 8,11,15)( 4, 7,12,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 9,13)( 2, 6,10,14)( 3,15,11, 8)( 4,16,12, 7)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6, 9,14)( 2, 5,10,13)( 3,16,11, 7)( 4,15,12, 8)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7,10,15)( 2, 8, 9,16)( 3, 6,12,13)( 4, 5,11,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 2, 8)( 3,14, 4,13)( 5,11, 6,12)( 9,16,10,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,15)( 8,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,13, 9, 5)( 2,14,10, 6)( 3,15,11, 8)( 4,16,12, 7)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 30] |
| Character table: |
2 5 4 5 4 3 3 4 4 4 3 3 5 5 4
1a 2a 2b 2c 2d 4a 4b 4c 4d 4e 4f 2e 2f 4g
2P 1a 1a 1a 1a 1a 2e 2e 2e 2e 2f 2b 1a 1a 2e
3P 1a 2a 2b 2c 2d 4a 4g 4d 4c 4e 4f 2e 2f 4b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 -1 1 -1 1 1 1 -1 1 1 -1
X.3 1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 1 1
X.4 1 -1 1 -1 1 -1 -1 1 1 -1 1 1 1 -1
X.5 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1 1
X.6 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 -1
X.7 1 1 1 1 -1 -1 1 1 1 -1 -1 1 1 1
X.8 1 1 1 1 1 1 -1 -1 -1 -1 -1 1 1 -1
X.9 2 2 -2 -2 . . . . . . . 2 -2 .
X.10 2 -2 -2 2 . . . . . . . 2 -2 .
X.11 2 . -2 . . . . A -A . . -2 2 .
X.12 2 . -2 . . . . -A A . . -2 2 .
X.13 2 . 2 . . . A . . . . -2 -2 -A
X.14 2 . 2 . . . -A . . . . -2 -2 A
A = -2*E(4)
= -2*Sqrt(-1) = -2i
|