# SageMath code for working with number field 20.0.38975682627981862469140631179493376.1.
# Some of these functions may take a long time to execute (this depends on the field).
# Define the number field: 
x = polygen(QQ);  K. = NumberField(x^20 + 6*x^18 + 141*x^16 - 200*x^15 + 1128*x^14 + 12*x^12 + 13488*x^11 + 5688*x^10 + 12432*x^9 + 30588*x^8 + 53328*x^7 + 258288*x^6 + 128320*x^5 - 191676*x^4 + 272160*x^3 + 445944*x^2 + 38880*x + 26644)
# Defining polynomial: 
K.defining_polynomial()
# Degree over Q: 
K.degree()
# Signature: 
K.signature()
# Discriminant: 
K.disc()
# Ramified primes: 
K.disc().support()
# Autmorphisms: 
K.automorphisms()
# Integral basis: 
K.integral_basis()
# Class group: 
K.class_group().invariants()
# Unit group: 
UK = K.unit_group()
# Unit rank: 
UK.rank()
# Generator for roots of unity: 
UK.torsion_generator()
# Fundamental units: 
UK.fundamental_units()
# Regulator: 
K.regulator()
# Analytic class number formula: 
# self-contained SageMath code snippet to compute the analytic class number formula
x = polygen(QQ);  K. = NumberField(x^20 + 6*x^18 + 141*x^16 - 200*x^15 + 1128*x^14 + 12*x^12 + 13488*x^11 + 5688*x^10 + 12432*x^9 + 30588*x^8 + 53328*x^7 + 258288*x^6 + 128320*x^5 - 191676*x^4 + 272160*x^3 + 445944*x^2 + 38880*x + 26644)
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator();  RR = RK.parent()
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))  
# Intermediate fields: 
K.subfields()[1:-1]
# Galois group: 
K.galois_group(type='pari')
# Frobenius cycle types: 
# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage:
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]