Show commands: Magma
Group invariants
| Abstract group: | $D_5^2.D_4$ |
| |
| Order: | $800=2^{5} \cdot 5^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $20$ |
| |
| Transitive number $t$: | $157$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,9)(2,10)(13,18)(14,17)$, $(3,20,16,11,7)(4,19,15,12,8)$, $(1,14,9,17)(2,13,10,18)(3,20,7,11)(4,19,8,12)(5,6)$, $(1,17,13,10,6,2,18,14,9,5)(3,4)(7,8)(11,12)(15,16)(19,20)$, $(1,12)(2,11)(3,14)(4,13)(5,16)(6,15)(7,17)(8,18)(9,19)(10,20)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $16$: $D_4\times C_2$, $Q_8:C_2$ x 2 $32$: 16T37 $400$: $(D_5 \wr C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 5: None
Degree 10: $(D_5 \wr C_2):C_2$
Low degree siblings
20T157 x 3, 40T682, 40T687, 40T694 x 2, 40T725 x 2, 40T728, 40T729, 40T739 x 2, 40T746, 40T753, 40T759 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{10}$ | $1$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| 2B | $2^{10}$ | $10$ | $2$ | $10$ | $( 1, 2)( 3, 8)( 4, 7)( 5, 6)( 9,10)(11,19)(12,20)(13,14)(15,16)(17,18)$ |
| 2C | $2^{4},1^{12}$ | $10$ | $2$ | $4$ | $( 1,18)( 2,17)( 5,14)( 6,13)$ |
| 2D | $2^{10}$ | $20$ | $2$ | $10$ | $( 1,19)( 2,20)( 3, 5)( 4, 6)( 7,10)( 8, 9)(11,14)(12,13)(15,18)(16,17)$ |
| 2E | $2^{8},1^{4}$ | $25$ | $2$ | $8$ | $( 1, 9)( 2,10)( 3,11)( 4,12)(13,18)(14,17)(15,19)(16,20)$ |
| 2F | $2^{10}$ | $25$ | $2$ | $10$ | $( 1, 2)( 3,12)( 4,11)( 5,18)( 6,17)( 7, 8)( 9,14)(10,13)(15,20)(16,19)$ |
| 4A | $4^{5}$ | $20$ | $4$ | $15$ | $( 1, 3, 2, 4)( 5,12, 6,11)( 7,14, 8,13)( 9,20,10,19)(15,18,16,17)$ |
| 4B1 | $4^{4},2,1^{2}$ | $50$ | $4$ | $13$ | $( 1,17, 9,14)( 2,18,10,13)( 3,20,11,16)( 4,19,12,15)( 5, 6)$ |
| 4B-1 | $4^{4},2,1^{2}$ | $50$ | $4$ | $13$ | $( 1,14, 9,17)( 2,13,10,18)( 3,16,11,20)( 4,15,12,19)( 5, 6)$ |
| 4C1 | $4^{4},2,1^{2}$ | $50$ | $4$ | $13$ | $( 1,14,18, 5)( 2,13,17, 6)( 3,20, 7,11)( 4,19, 8,12)( 9,10)$ |
| 4C-1 | $4^{4},2,1^{2}$ | $50$ | $4$ | $13$ | $( 1, 5,18,14)( 2, 6,17,13)( 3,11, 7,20)( 4,12, 8,19)( 9,10)$ |
| 4D | $4^{4},2^{2}$ | $100$ | $4$ | $14$ | $( 1,19,13,12)( 2,20,14,11)( 3,10, 7, 5)( 4, 9, 8, 6)(15,18)(16,17)$ |
| 4E | $4^{5}$ | $100$ | $4$ | $15$ | $( 1, 8, 2, 7)( 3, 9,12,14)( 4,10,11,13)( 5,20,18,15)( 6,19,17,16)$ |
| 5A | $5^{4}$ | $8$ | $5$ | $16$ | $( 1, 6, 9,13,18)( 2, 5,10,14,17)( 3, 7,11,16,20)( 4, 8,12,15,19)$ |
| 5B | $5^{2},1^{10}$ | $8$ | $5$ | $8$ | $( 1, 9,18, 6,13)( 2,10,17, 5,14)$ |
| 5C | $5^{4}$ | $8$ | $5$ | $16$ | $( 1,18,13, 9, 6)( 2,17,14,10, 5)( 3,16, 7,20,11)( 4,15, 8,19,12)$ |
| 10A | $10^{2}$ | $8$ | $10$ | $18$ | $( 1,14, 6,17, 9, 2,13, 5,18,10)( 3,15, 7,19,11, 4,16, 8,20,12)$ |
| 10B | $10,2^{5}$ | $8$ | $10$ | $14$ | $( 1, 5, 9,14,18, 2, 6,10,13,17)( 3, 4)( 7, 8)(11,12)(15,16)(19,20)$ |
| 10C | $10^{2}$ | $8$ | $10$ | $18$ | $( 1,10,18, 5,13, 2, 9,17, 6,14)( 3,19,16,12, 7, 4,20,15,11, 8)$ |
| 10D | $10,2^{5}$ | $40$ | $10$ | $14$ | $( 1,10,18, 5,13, 2, 9,17, 6,14)( 3, 8)( 4, 7)(11,19)(12,20)(15,16)$ |
| 10E | $5^{2},2^{4},1^{2}$ | $40$ | $10$ | $12$ | $( 1,18)( 2,17)( 3,20,16,11, 7)( 4,19,15,12, 8)( 5,14)( 6,13)$ |
| 10F1 | $10^{2}$ | $40$ | $10$ | $18$ | $( 1, 8,18, 4,13,19, 9,15, 6,12)( 2, 7,17, 3,14,20,10,16, 5,11)$ |
| 10F3 | $10^{2}$ | $40$ | $10$ | $18$ | $( 1, 4, 9,12,18,19, 6, 8,13,15)( 2, 3,10,11,17,20, 5, 7,14,16)$ |
| 20A1 | $20$ | $40$ | $20$ | $19$ | $( 1,11,10, 8,18, 3, 5,19,13,16, 2,12, 9, 7,17, 4, 6,20,14,15)$ |
| 20A-1 | $20$ | $40$ | $20$ | $19$ | $( 1,15,14,20, 6, 4,17, 7, 9,12, 2,16,13,19, 5, 3,18, 8,10,11)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B1 | 4B-1 | 4C1 | 4C-1 | 4D | 4E | 5A | 5B | 5C | 10A | 10B | 10C | 10D | 10E | 10F1 | 10F3 | 20A1 | 20A-1 | ||
| Size | 1 | 1 | 10 | 10 | 20 | 25 | 25 | 20 | 50 | 50 | 50 | 50 | 100 | 100 | 8 | 8 | 8 | 8 | 8 | 8 | 40 | 40 | 40 | 40 | 40 | 40 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2E | 2E | 2E | 2E | 2E | 2F | 5A | 5B | 5C | 5A | 5B | 5C | 5B | 5B | 5A | 5A | 10C | 10C | |
| 5 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B1 | 4B-1 | 4C1 | 4C-1 | 4D | 4E | 1A | 1A | 1A | 2A | 2A | 2A | 2B | 2C | 2D | 2D | 4A | 4A | |
| Type | |||||||||||||||||||||||||||
| 800.970.1a | R | ||||||||||||||||||||||||||
| 800.970.1b | R | ||||||||||||||||||||||||||
| 800.970.1c | R | ||||||||||||||||||||||||||
| 800.970.1d | R | ||||||||||||||||||||||||||
| 800.970.1e | R | ||||||||||||||||||||||||||
| 800.970.1f | R | ||||||||||||||||||||||||||
| 800.970.1g | R | ||||||||||||||||||||||||||
| 800.970.1h | R | ||||||||||||||||||||||||||
| 800.970.2a | R | ||||||||||||||||||||||||||
| 800.970.2b | R | ||||||||||||||||||||||||||
| 800.970.2c1 | C | ||||||||||||||||||||||||||
| 800.970.2c2 | C | ||||||||||||||||||||||||||
| 800.970.2d1 | C | ||||||||||||||||||||||||||
| 800.970.2d2 | C | ||||||||||||||||||||||||||
| 800.970.8a | R | ||||||||||||||||||||||||||
| 800.970.8b | R | ||||||||||||||||||||||||||
| 800.970.8c | R | ||||||||||||||||||||||||||
| 800.970.8d | R | ||||||||||||||||||||||||||
| 800.970.8e | R | ||||||||||||||||||||||||||
| 800.970.8f | R | ||||||||||||||||||||||||||
| 800.970.8g | R | ||||||||||||||||||||||||||
| 800.970.8h | R | ||||||||||||||||||||||||||
| 800.970.8i1 | R | ||||||||||||||||||||||||||
| 800.970.8i2 | R | ||||||||||||||||||||||||||
| 800.970.8j1 | C | ||||||||||||||||||||||||||
| 800.970.8j2 | C |
Regular extensions
Data not computed