Normalized defining polynomial
\( x^{20} - 2x^{18} - 15x^{16} + 60x^{14} + 58x^{12} - 488x^{10} + 770x^{8} - 572x^{6} + 273x^{4} - 78x^{2} + 13 \)
Invariants
Degree: | $20$ |
| |
Signature: | $[0, 10]$ |
| |
Discriminant: |
\(333014701462077604341219328\)
\(\medspace = 2^{40}\cdot 13^{13}\)
|
| |
Root discriminant: | \(21.19\) |
| |
Galois root discriminant: | not computed | ||
Ramified primes: |
\(2\), \(13\)
|
| |
Discriminant root field: | \(\Q(\sqrt{13}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-1}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{12}-\frac{1}{2}a^{9}+\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}$, $\frac{1}{4}a^{13}+\frac{1}{4}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{10}-\frac{1}{2}a^{7}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{11}-\frac{1}{2}a^{8}-\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{52}a^{16}+\frac{3}{26}a^{14}+\frac{1}{13}a^{12}-\frac{1}{13}a^{10}+\frac{7}{26}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{4}$, $\frac{1}{52}a^{17}+\frac{3}{26}a^{15}+\frac{1}{13}a^{13}-\frac{1}{13}a^{11}+\frac{7}{26}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{4}a$, $\frac{1}{79978964}a^{18}-\frac{346657}{39989482}a^{16}+\frac{9342313}{79978964}a^{14}-\frac{660787}{39989482}a^{12}+\frac{4106821}{79978964}a^{10}-\frac{8586879}{39989482}a^{8}-\frac{1}{2}a^{7}-\frac{2751847}{6152228}a^{6}-\frac{1}{2}a^{5}+\frac{666364}{1538057}a^{4}-\frac{1}{2}a^{3}+\frac{1424995}{3076114}a^{2}-\frac{1}{2}a+\frac{83168}{1538057}$, $\frac{1}{79978964}a^{19}-\frac{346657}{39989482}a^{17}+\frac{9342313}{79978964}a^{15}-\frac{660787}{39989482}a^{13}+\frac{4106821}{79978964}a^{11}-\frac{8586879}{39989482}a^{9}-\frac{1}{2}a^{8}-\frac{2751847}{6152228}a^{7}-\frac{1}{2}a^{6}+\frac{666364}{1538057}a^{5}-\frac{1}{2}a^{4}+\frac{1424995}{3076114}a^{3}-\frac{1}{2}a^{2}+\frac{83168}{1538057}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $9$ |
| |
Torsion generator: |
\( \frac{181755}{3076114} a^{18} - \frac{138030}{1538057} a^{16} - \frac{2828685}{3076114} a^{14} + \frac{9521833}{3076114} a^{12} + \frac{7325349}{1538057} a^{10} - \frac{40216688}{1538057} a^{8} + \frac{104424931}{3076114} a^{6} - \frac{64075245}{3076114} a^{4} + \frac{30284683}{3076114} a^{2} - \frac{3123541}{1538057} \)
(order $4$)
|
| |
Fundamental units: |
$\frac{6139737}{39989482}a^{18}-\frac{9842135}{39989482}a^{16}-\frac{48134285}{19994741}a^{14}+\frac{165248654}{19994741}a^{12}+\frac{491154193}{39989482}a^{10}-\frac{2814657093}{39989482}a^{8}+\frac{138067622}{1538057}a^{6}-\frac{76079330}{1538057}a^{4}+\frac{28006142}{1538057}a^{2}-\frac{4402140}{1538057}$, $\frac{3836073}{79978964}a^{18}-\frac{5717921}{79978964}a^{16}-\frac{28881409}{39989482}a^{14}+\frac{99942301}{39989482}a^{12}+\frac{70252178}{19994741}a^{10}-\frac{819832457}{39989482}a^{8}+\frac{94118705}{3076114}a^{6}-\frac{67261141}{3076114}a^{4}+\frac{52895575}{6152228}a^{2}-\frac{10267269}{6152228}$, $\frac{10057831}{79978964}a^{18}-\frac{18362303}{79978964}a^{16}-\frac{38966125}{19994741}a^{14}+\frac{11132381}{1538057}a^{12}+\frac{178123631}{19994741}a^{10}-\frac{2437522917}{39989482}a^{8}+\frac{129706653}{1538057}a^{6}-\frac{72991172}{1538057}a^{4}+\frac{83273649}{6152228}a^{2}-\frac{8884275}{6152228}$, $\frac{18102235}{79978964}a^{19}+\frac{271118}{19994741}a^{18}-\frac{29364329}{79978964}a^{17}-\frac{882968}{19994741}a^{16}-\frac{71479619}{19994741}a^{15}-\frac{7641389}{39989482}a^{14}+\frac{982761229}{79978964}a^{13}+\frac{88400745}{79978964}a^{12}+\frac{368383579}{19994741}a^{11}+\frac{4206819}{39989482}a^{10}-\frac{8444604483}{79978964}a^{9}-\frac{54172627}{6152228}a^{8}+\frac{201053356}{1538057}a^{7}+\frac{52396767}{3076114}a^{6}-\frac{381221003}{6152228}a^{5}-\frac{65758563}{6152228}a^{4}+\frac{107401339}{6152228}a^{3}+\frac{665388}{1538057}a^{2}-\frac{1952027}{1538057}a+\frac{5281207}{6152228}$, $\frac{17017763}{79978964}a^{19}-\frac{3953375}{19994741}a^{18}-\frac{25832457}{79978964}a^{17}+\frac{14607691}{39989482}a^{16}-\frac{135317849}{39989482}a^{15}+\frac{243954593}{79978964}a^{14}+\frac{223590121}{19994741}a^{13}-\frac{914087753}{79978964}a^{12}+\frac{732560339}{39989482}a^{11}-\frac{1093367083}{79978964}a^{10}-\frac{1935090083}{19994741}a^{9}+\frac{7654748121}{79978964}a^{8}+\frac{349709945}{3076114}a^{7}-\frac{829310415}{6152228}a^{6}-\frac{78865610}{1538057}a^{5}+\frac{498951721}{6152228}a^{4}+\frac{104739787}{6152228}a^{3}-\frac{181417399}{6152228}a^{2}-\frac{13089315}{6152228}a+\frac{32267717}{6152228}$, $\frac{1979583}{19994741}a^{19}+\frac{1695391}{39989482}a^{18}-\frac{18989013}{79978964}a^{17}-\frac{2969275}{19994741}a^{16}-\frac{28674206}{19994741}a^{15}-\frac{42914037}{79978964}a^{14}+\frac{263649333}{39989482}a^{13}+\frac{284268659}{79978964}a^{12}+\frac{75922401}{19994741}a^{11}-\frac{74934107}{79978964}a^{10}-\frac{1047092043}{19994741}a^{9}-\frac{2082129457}{79978964}a^{8}+\frac{289091739}{3076114}a^{7}+\frac{381647055}{6152228}a^{6}-\frac{111536710}{1538057}a^{5}-\frac{367130255}{6152228}a^{4}+\frac{82054655}{3076114}a^{3}+\frac{167254315}{6152228}a^{2}-\frac{18266625}{6152228}a-\frac{34301835}{6152228}$, $\frac{2986455}{19994741}a^{19}-\frac{3197527}{19994741}a^{18}-\frac{14386085}{39989482}a^{17}+\frac{12788657}{39989482}a^{16}-\frac{87019611}{39989482}a^{15}+\frac{193608349}{79978964}a^{14}+\frac{797695641}{79978964}a^{13}-\frac{770544181}{79978964}a^{12}+\frac{236238471}{39989482}a^{11}-\frac{768679643}{79978964}a^{10}-\frac{6365867537}{79978964}a^{9}+\frac{6343493617}{79978964}a^{8}+\frac{215764498}{1538057}a^{7}-\frac{748294613}{6152228}a^{6}-\frac{648965601}{6152228}a^{5}+\frac{496896351}{6152228}a^{4}+\frac{126427415}{3076114}a^{3}-\frac{173497393}{6152228}a^{2}-\frac{51829783}{6152228}a+\frac{30060447}{6152228}$, $\frac{1898029}{39989482}a^{19}-\frac{630425}{79978964}a^{18}-\frac{808103}{39989482}a^{17}-\frac{1021753}{79978964}a^{16}-\frac{5051051}{6152228}a^{15}+\frac{3117384}{19994741}a^{14}+\frac{131979873}{79978964}a^{13}-\frac{1421551}{79978964}a^{12}+\frac{527893739}{79978964}a^{11}-\frac{74855607}{39989482}a^{10}-\frac{1317228345}{79978964}a^{9}+\frac{7349807}{6152228}a^{8}+\frac{18555987}{6152228}a^{7}+\frac{19329967}{3076114}a^{6}+\frac{63765953}{6152228}a^{5}-\frac{56668813}{6152228}a^{4}-\frac{22506689}{6152228}a^{3}+\frac{17866339}{6152228}a^{2}+\frac{12816841}{6152228}a-\frac{1899384}{1538057}$, $\frac{1556163}{39989482}a^{19}-\frac{2229041}{39989482}a^{18}-\frac{554795}{3076114}a^{17}+\frac{9767973}{79978964}a^{16}-\frac{17432195}{39989482}a^{15}+\frac{65050551}{79978964}a^{14}+\frac{159091833}{39989482}a^{13}-\frac{280423677}{79978964}a^{12}-\frac{60385571}{19994741}a^{11}-\frac{204836915}{79978964}a^{10}-\frac{1129550553}{39989482}a^{9}+\frac{2224259607}{79978964}a^{8}+\frac{234199397}{3076114}a^{7}-\frac{298251051}{6152228}a^{6}-\frac{226500589}{3076114}a^{5}+\frac{248494147}{6152228}a^{4}+\frac{90851953}{3076114}a^{3}-\frac{121643503}{6152228}a^{2}-\frac{10602389}{1538057}a+\frac{11584143}{3076114}$
|
| |
Regulator: | \( 752160.226838 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 752160.226838 \cdot 1}{4\cdot\sqrt{333014701462077604341219328}}\cr\approx \mathstrut & 0.988137437739 \end{aligned}\] (assuming GRH)
Galois group
$C_2^9.(C_2\times F_5)$ (as 20T514):
A solvable group of order 20480 |
The 74 conjugacy class representatives for $C_2^9.(C_2\times F_5)$ |
Character table for $C_2^9.(C_2\times F_5)$ |
Intermediate fields
\(\Q(\sqrt{-1}) \), 5.1.35152.1, 10.0.79082438656.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 20 siblings: | data not computed |
Degree 40 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.10.0.1}{10} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{5}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/17.4.0.1}{4} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{5}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.10.0.1}{10} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{5}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}{,}\,{\href{/padicField/47.4.0.1}{4} }$ | ${\href{/padicField/53.5.0.1}{5} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.20.40d1.22 | $x^{20} + 4 x^{12} + 2 x^{10} + 4 x^{7} + 4 x^{3} + 4 x + 2$ | $20$ | $1$ | $40$ | 20T514 | not computed |
\(13\)
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
13.1.4.3a1.1 | $x^{4} + 13$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
13.1.4.3a1.1 | $x^{4} + 13$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
13.1.8.7a1.1 | $x^{8} + 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $$[\ ]_{8}^{2}$$ |