Show commands: Magma
Group invariants
Abstract group: | $C_2^9.(C_2\times F_5)$ |
| |
Order: | $20480=2^{12} \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $20$ |
| |
Transitive number $t$: | $514$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,19,13,16,2,20,14,15)(3,6,12,9)(4,5,11,10)(7,17)(8,18)$, $(1,16,9,3,17,11,6,19,14,7)(2,15,10,4,18,12,5,20,13,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ $20$: $F_5$ $40$: $F_{5}\times C_2$ $80$: 20T19 $320$: $(C_2^4 : C_5):C_4$ $640$: $((C_2^4 : C_5):C_4)\times C_2$ $1280$: 20T191 $10240$: 20T416 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $F_5$
Degree 10: $F_{5}\times C_2$
Low degree siblings
20T514 x 3, 20T530 x 4, 40T11336 x 4, 40T11339 x 2, 40T11360 x 2, 40T11364 x 2, 40T11373 x 2, 40T11378 x 2, 40T11390 x 4, 40T11391 x 4, 40T12858 x 2, 40T12860 x 4, 40T12876 x 2, 40T12878 x 2, 40T12880 x 2, 40T12988 x 2, 40T12991 x 2, 40T12992 x 4, 40T13368 x 2, 40T13429 x 2, 40T13440 x 4, 40T13454 x 4, 40T13593 x 2, 40T13608 x 2, 40T14049 x 4, 40T14050 x 4, 40T14163 x 2, 40T14167 x 2, 40T14170 x 2, 40T14175 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
74 x 74 character table
Regular extensions
Data not computed