Normalized defining polynomial
\( x^{20} - 5 x^{19} + 13 x^{18} - 17 x^{17} + 94 x^{16} - 151 x^{15} + 406 x^{14} - 633 x^{13} + 3653 x^{12} - 772 x^{11} + 13426 x^{10} + 5719 x^{9} + 24764 x^{8} + 15388 x^{7} + 21892 x^{6} + 15269 x^{5} + 9379 x^{4} + 3157 x^{3} + 732 x^{2} - 45 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2131588214553606414985382080078125=3^{8}\cdot 5^{15}\cdot 239^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{19} a^{16} - \frac{3}{19} a^{15} + \frac{2}{19} a^{14} - \frac{6}{19} a^{13} - \frac{6}{19} a^{12} + \frac{5}{19} a^{11} + \frac{5}{19} a^{10} - \frac{7}{19} a^{9} + \frac{6}{19} a^{8} - \frac{2}{19} a^{7} - \frac{1}{19} a^{6} + \frac{9}{19} a^{5} + \frac{4}{19} a^{4} + \frac{2}{19} a^{3} - \frac{1}{19} a^{2} - \frac{8}{19}$, $\frac{1}{19} a^{17} - \frac{7}{19} a^{15} - \frac{5}{19} a^{13} + \frac{6}{19} a^{12} + \frac{1}{19} a^{11} + \frac{8}{19} a^{10} + \frac{4}{19} a^{9} - \frac{3}{19} a^{8} - \frac{7}{19} a^{7} + \frac{6}{19} a^{6} - \frac{7}{19} a^{5} - \frac{5}{19} a^{4} + \frac{5}{19} a^{3} - \frac{3}{19} a^{2} - \frac{8}{19} a - \frac{5}{19}$, $\frac{1}{19} a^{18} - \frac{2}{19} a^{15} + \frac{9}{19} a^{14} + \frac{2}{19} a^{13} - \frac{3}{19} a^{12} + \frac{5}{19} a^{11} + \frac{1}{19} a^{10} + \frac{5}{19} a^{9} - \frac{3}{19} a^{8} - \frac{8}{19} a^{7} + \frac{5}{19} a^{6} + \frac{1}{19} a^{5} - \frac{5}{19} a^{4} - \frac{8}{19} a^{3} + \frac{4}{19} a^{2} - \frac{5}{19} a + \frac{1}{19}$, $\frac{1}{15512369205008039820354470756707694779} a^{19} - \frac{323252816855046070455389182688129516}{15512369205008039820354470756707694779} a^{18} + \frac{228568345040343823113967698155206840}{15512369205008039820354470756707694779} a^{17} + \frac{9875554837163375767244664536011767}{816440484474107358966024776668826041} a^{16} - \frac{6235113483377371664772176503554996236}{15512369205008039820354470756707694779} a^{15} - \frac{122178574679704887050251438836464324}{15512369205008039820354470756707694779} a^{14} - \frac{1476555159434645100164456683350338014}{15512369205008039820354470756707694779} a^{13} + \frac{3371131001866041241379831279730066107}{15512369205008039820354470756707694779} a^{12} - \frac{4639066402397403657397313451609707101}{15512369205008039820354470756707694779} a^{11} - \frac{6815730492821960225415334958385178807}{15512369205008039820354470756707694779} a^{10} - \frac{1117009524367977755880157439057141537}{15512369205008039820354470756707694779} a^{9} - \frac{3065720927126047345366829822029928746}{15512369205008039820354470756707694779} a^{8} - \frac{4803278884894523203016612453513018358}{15512369205008039820354470756707694779} a^{7} + \frac{782561422108092912947815474263345800}{15512369205008039820354470756707694779} a^{6} - \frac{99096795565569851985925441562595662}{15512369205008039820354470756707694779} a^{5} - \frac{885770062296444773556619676142698479}{15512369205008039820354470756707694779} a^{4} + \frac{2259070241367831694113368303013671357}{15512369205008039820354470756707694779} a^{3} + \frac{4659113921577682132592373823052802805}{15512369205008039820354470756707694779} a^{2} - \frac{3335523516769060600562477160408302914}{15512369205008039820354470756707694779} a + \frac{27936620578177830466262836616446355}{15512369205008039820354470756707694779}$
Class group and class number
$C_{2}\times C_{58}$, which has order $116$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{462818769889456179651310650579408872}{15512369205008039820354470756707694779} a^{19} - \frac{2326769500830031245644024226778428991}{15512369205008039820354470756707694779} a^{18} + \frac{6085575599032599985406446477638831728}{15512369205008039820354470756707694779} a^{17} - \frac{8053672957771882543603366298796728394}{15512369205008039820354470756707694779} a^{16} + \frac{43756386035050661857706352506913597896}{15512369205008039820354470756707694779} a^{15} - \frac{71071874341284803146102106521707118592}{15512369205008039820354470756707694779} a^{14} + \frac{190193241180812691445636467388065236429}{15512369205008039820354470756707694779} a^{13} - \frac{298259079478417551045537111755855720027}{15512369205008039820354470756707694779} a^{12} + \frac{1699680945567312614727430986045645406878}{15512369205008039820354470756707694779} a^{11} - \frac{403976620459062232554254939005395478672}{15512369205008039820354470756707694779} a^{10} + \frac{6238463018903085141089317736446009784682}{15512369205008039820354470756707694779} a^{9} + \frac{2499055278537939215613511471752905341233}{15512369205008039820354470756707694779} a^{8} + \frac{11448874579390192561509181938382218220782}{15512369205008039820354470756707694779} a^{7} + \frac{6933857183413525225748035473749834037042}{15512369205008039820354470756707694779} a^{6} + \frac{10074706929359956358303595959856066709952}{15512369205008039820354470756707694779} a^{5} + \frac{7034096685754392810557671000997154146244}{15512369205008039820354470756707694779} a^{4} + \frac{4294624621290086941447127430527707227167}{15512369205008039820354470756707694779} a^{3} + \frac{1532784301452226441723579802687424978039}{15512369205008039820354470756707694779} a^{2} + \frac{380233125383883954419361157061624425244}{15512369205008039820354470756707694779} a + \frac{1934096680512204750531796611047313906}{15512369205008039820354470756707694779} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10123076.9997 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times D_5$ (as 20T6):
| A solvable group of order 40 |
| The 16 conjugacy class representatives for $C_4\times D_5$ |
| Character table for $C_4\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 239 | Data not computed | ||||||