Properties

Label 5.4.3.2
Base \(\Q_{5}\)
Degree \(4\)
e \(4\)
f \(1\)
c \(3\)
Galois group $C_4$ (as 4T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $4$
Ramification exponent $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $3$
Discriminant root field: $\Q_{5}(\sqrt{5})$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 5 }) }$: $4$
This field is Galois and abelian over $\Q_{5}.$
Visible slopes:None

Intermediate fields

$\Q_{5}(\sqrt{5})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial: \( x^{4} + 5 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + 4z^{2} + z + 4$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_4$ (as 4T1)
Inertia group:$C_4$ (as 4T1)
Wild inertia group:$C_1$
Unramified degree:$1$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:$x^{4} - x^{3} + x^{2} - x + 1$