Properties

Label 3.8.4.1
Base \(\Q_{3}\)
Degree \(8\)
e \(2\)
f \(4\)
c \(4\)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $8$
Ramification exponent $e$: $2$
Residue field degree $f$: $4$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{3}$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 3 }) }$: $8$
This field is Galois and abelian over $\Q_{3}.$
Visible slopes:None

Intermediate fields

$\Q_{3}(\sqrt{2})$, $\Q_{3}(\sqrt{3})$, $\Q_{3}(\sqrt{3\cdot 2})$, 3.4.0.1, 3.4.2.1, 3.4.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{4} + 2 x^{3} + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_2\times C_4$ (as 8T2)
Inertia group:Intransitive group isomorphic to $C_2$
Wild inertia group:$C_1$
Unramified degree:$4$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1$