Properties

Label 5.8.6.1
Base \(\Q_{5}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 4 x + 2 )^{4} + 10 ( x^{2} + 4 x + 2 )^{2} + 160 ( x^{2} + 4 x + 2 ) + 345$ Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $8$
Ramification exponent $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{5}$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 5 }) }$: $8$
This field is Galois and abelian over $\Q_{5}.$
Visible slopes:None

Intermediate fields

$\Q_{5}(\sqrt{2})$, $\Q_{5}(\sqrt{5})$, $\Q_{5}(\sqrt{5\cdot 2})$, 5.4.2.1, 5.4.3.2, 5.4.3.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} + 4 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_2\times C_4$ (as 8T2)
Inertia group: Intransitive group isomorphic to $C_4$
Wild inertia group: $C_1$
Unramified degree: $2$
Tame degree: $4$
Wild slopes: None
Galois mean slope: $3/4$
Galois splitting model:$x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1$