Properties

Label 18.6.366...625.1
Degree $18$
Signature $[6, 6]$
Discriminant $3.664\times 10^{25}$
Root discriminant \(26.32\)
Ramified primes $3,5$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\He_3:C_4$ (as 18T49)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^18 - 12*x^15 + 36*x^14 - 33*x^12 + 117*x^11 - 171*x^10 - 2*x^9 + 135*x^8 - 81*x^7 - 30*x^6 + 36*x^5 + 81*x^4 - 393*x^3 + 531*x^2 - 270*x + 44)
 
Copy content gp:K = bnfinit(y^18 - 12*y^15 + 36*y^14 - 33*y^12 + 117*y^11 - 171*y^10 - 2*y^9 + 135*y^8 - 81*y^7 - 30*y^6 + 36*y^5 + 81*y^4 - 393*y^3 + 531*y^2 - 270*y + 44, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 12*x^15 + 36*x^14 - 33*x^12 + 117*x^11 - 171*x^10 - 2*x^9 + 135*x^8 - 81*x^7 - 30*x^6 + 36*x^5 + 81*x^4 - 393*x^3 + 531*x^2 - 270*x + 44);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 12*x^15 + 36*x^14 - 33*x^12 + 117*x^11 - 171*x^10 - 2*x^9 + 135*x^8 - 81*x^7 - 30*x^6 + 36*x^5 + 81*x^4 - 393*x^3 + 531*x^2 - 270*x + 44)
 

\( x^{18} - 12 x^{15} + 36 x^{14} - 33 x^{12} + 117 x^{11} - 171 x^{10} - 2 x^{9} + 135 x^{8} - 81 x^{7} + \cdots + 44 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $18$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[6, 6]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(36644198070556426025390625\) \(\medspace = 3^{36}\cdot 5^{12}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(26.32\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{58/27}5^{3/4}\approx 35.412341444574025$
Ramified primes:   \(3\), \(5\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_3$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{12}+\frac{1}{4}a^{7}+\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{13}+\frac{1}{4}a^{8}+\frac{1}{4}a^{7}+\frac{1}{4}a^{6}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{952}a^{16}+\frac{9}{952}a^{15}+\frac{19}{238}a^{14}+\frac{151}{952}a^{13}+\frac{9}{136}a^{12}-\frac{47}{238}a^{11}-\frac{1}{7}a^{10}+\frac{309}{952}a^{9}+\frac{31}{68}a^{8}+\frac{65}{136}a^{7}-\frac{40}{119}a^{6}-\frac{167}{476}a^{4}+\frac{181}{476}a^{3}+\frac{249}{952}a^{2}-\frac{219}{476}a-\frac{93}{238}$, $\frac{1}{31\cdots 12}a^{17}-\frac{105841414556345}{31\cdots 12}a^{16}-\frac{46\cdots 19}{78\cdots 78}a^{15}+\frac{49\cdots 29}{31\cdots 12}a^{14}-\frac{31\cdots 77}{31\cdots 12}a^{13}-\frac{17\cdots 95}{78\cdots 78}a^{12}+\frac{59\cdots 36}{39\cdots 39}a^{11}+\frac{84\cdots 69}{31\cdots 12}a^{10}-\frac{38\cdots 25}{78\cdots 78}a^{9}+\frac{15\cdots 87}{45\cdots 16}a^{8}+\frac{42\cdots 25}{15\cdots 56}a^{7}-\frac{24\cdots 31}{78\cdots 78}a^{6}+\frac{29\cdots 03}{78\cdots 78}a^{5}-\frac{16\cdots 23}{39\cdots 39}a^{4}+\frac{11\cdots 09}{31\cdots 12}a^{3}+\frac{68\cdots 09}{15\cdots 56}a^{2}+\frac{68\cdots 94}{39\cdots 39}a+\frac{14\cdots 92}{39\cdots 39}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $11$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{641937521115}{10860908935042}a^{17}+\frac{79116760827}{5430454467521}a^{16}+\frac{26764657449}{5430454467521}a^{15}-\frac{3931760030940}{5430454467521}a^{14}+\frac{10570081998636}{5430454467521}a^{13}+\frac{2349750710280}{5430454467521}a^{12}-\frac{17287431279039}{10860908935042}a^{11}+\frac{64571716853325}{10860908935042}a^{10}-\frac{91019866630781}{10860908935042}a^{9}-\frac{15425530973811}{5430454467521}a^{8}+\frac{67883497525053}{10860908935042}a^{7}-\frac{18927509618457}{10860908935042}a^{6}-\frac{17173191890457}{5430454467521}a^{5}+\frac{16438189858146}{5430454467521}a^{4}+\frac{41382068045949}{10860908935042}a^{3}-\frac{216890839459953}{10860908935042}a^{2}+\frac{250464765196773}{10860908935042}a-\frac{33149262805525}{5430454467521}$, $\frac{190182269157885}{92\cdots 68}a^{17}+\frac{39\cdots 75}{15\cdots 56}a^{16}+\frac{52\cdots 07}{15\cdots 56}a^{15}-\frac{92\cdots 03}{39\cdots 39}a^{14}+\frac{18\cdots 29}{39\cdots 39}a^{13}+\frac{76\cdots 67}{15\cdots 56}a^{12}+\frac{32\cdots 87}{78\cdots 78}a^{11}+\frac{13\cdots 15}{92\cdots 68}a^{10}-\frac{66\cdots 01}{39\cdots 39}a^{9}-\frac{19\cdots 13}{11\cdots 54}a^{8}-\frac{85\cdots 35}{78\cdots 78}a^{7}+\frac{11\cdots 09}{78\cdots 78}a^{6}-\frac{28\cdots 43}{92\cdots 68}a^{5}+\frac{78\cdots 17}{22\cdots 08}a^{4}-\frac{63\cdots 07}{15\cdots 56}a^{3}-\frac{54\cdots 51}{22\cdots 08}a^{2}-\frac{22\cdots 19}{78\cdots 78}a+\frac{99\cdots 42}{39\cdots 39}$, $\frac{21\cdots 45}{31\cdots 12}a^{17}+\frac{15\cdots 27}{31\cdots 12}a^{16}+\frac{32\cdots 53}{78\cdots 78}a^{15}-\frac{24\cdots 83}{31\cdots 12}a^{14}+\frac{57\cdots 23}{31\cdots 12}a^{13}+\frac{51\cdots 82}{39\cdots 39}a^{12}-\frac{82\cdots 29}{78\cdots 78}a^{11}+\frac{21\cdots 29}{31\cdots 12}a^{10}-\frac{29\cdots 95}{46\cdots 34}a^{9}-\frac{20\cdots 49}{45\cdots 16}a^{8}+\frac{77\cdots 75}{15\cdots 56}a^{7}-\frac{13\cdots 71}{78\cdots 78}a^{6}-\frac{27\cdots 33}{78\cdots 78}a^{5}+\frac{24\cdots 35}{78\cdots 78}a^{4}+\frac{22\cdots 75}{45\cdots 16}a^{3}-\frac{34\cdots 77}{15\cdots 56}a^{2}+\frac{74\cdots 19}{39\cdots 39}a-\frac{18\cdots 74}{39\cdots 39}$, $\frac{21\cdots 45}{31\cdots 12}a^{17}+\frac{15\cdots 27}{31\cdots 12}a^{16}+\frac{32\cdots 53}{78\cdots 78}a^{15}-\frac{24\cdots 83}{31\cdots 12}a^{14}+\frac{57\cdots 23}{31\cdots 12}a^{13}+\frac{51\cdots 82}{39\cdots 39}a^{12}-\frac{82\cdots 29}{78\cdots 78}a^{11}+\frac{21\cdots 29}{31\cdots 12}a^{10}-\frac{29\cdots 95}{46\cdots 34}a^{9}-\frac{20\cdots 49}{45\cdots 16}a^{8}+\frac{77\cdots 75}{15\cdots 56}a^{7}-\frac{13\cdots 71}{78\cdots 78}a^{6}-\frac{27\cdots 33}{78\cdots 78}a^{5}+\frac{24\cdots 35}{78\cdots 78}a^{4}+\frac{22\cdots 75}{45\cdots 16}a^{3}-\frac{34\cdots 77}{15\cdots 56}a^{2}+\frac{74\cdots 19}{39\cdots 39}a-\frac{14\cdots 35}{39\cdots 39}$, $\frac{312641150013499}{92\cdots 68}a^{17}+\frac{14\cdots 97}{31\cdots 12}a^{16}+\frac{14\cdots 75}{31\cdots 12}a^{15}-\frac{14\cdots 50}{39\cdots 39}a^{14}+\frac{21\cdots 51}{31\cdots 12}a^{13}+\frac{35\cdots 47}{31\cdots 12}a^{12}+\frac{21\cdots 53}{78\cdots 78}a^{11}+\frac{28\cdots 83}{92\cdots 68}a^{10}-\frac{20\cdots 17}{31\cdots 12}a^{9}-\frac{19\cdots 74}{56\cdots 77}a^{8}+\frac{82\cdots 39}{31\cdots 12}a^{7}+\frac{27\cdots 77}{15\cdots 56}a^{6}-\frac{16\cdots 25}{92\cdots 68}a^{5}+\frac{63\cdots 77}{22\cdots 08}a^{4}+\frac{23\cdots 03}{15\cdots 56}a^{3}-\frac{35\cdots 09}{45\cdots 16}a^{2}+\frac{10\cdots 29}{15\cdots 56}a+\frac{36\cdots 15}{78\cdots 78}$, $\frac{12\cdots 21}{31\cdots 12}a^{17}-\frac{11\cdots 77}{15\cdots 56}a^{16}-\frac{52\cdots 83}{31\cdots 12}a^{15}-\frac{22\cdots 49}{31\cdots 12}a^{14}+\frac{33\cdots 29}{15\cdots 56}a^{13}-\frac{23\cdots 97}{31\cdots 12}a^{12}-\frac{18\cdots 31}{39\cdots 39}a^{11}+\frac{44\cdots 69}{31\cdots 12}a^{10}-\frac{50\cdots 49}{31\cdots 12}a^{9}-\frac{14\cdots 93}{45\cdots 16}a^{8}+\frac{50\cdots 23}{31\cdots 12}a^{7}-\frac{98\cdots 49}{39\cdots 39}a^{6}+\frac{45\cdots 69}{15\cdots 56}a^{5}+\frac{950116934760115}{56\cdots 77}a^{4}-\frac{45\cdots 37}{31\cdots 12}a^{3}+\frac{54\cdots 65}{45\cdots 16}a^{2}+\frac{62\cdots 43}{15\cdots 56}a-\frac{81\cdots 13}{78\cdots 78}$, $\frac{41\cdots 63}{31\cdots 12}a^{17}+\frac{25\cdots 33}{31\cdots 12}a^{16}+\frac{770774712031579}{11\cdots 54}a^{15}-\frac{67\cdots 89}{45\cdots 16}a^{14}+\frac{11\cdots 69}{31\cdots 12}a^{13}+\frac{34\cdots 67}{15\cdots 56}a^{12}-\frac{19\cdots 03}{78\cdots 78}a^{11}+\frac{43\cdots 63}{31\cdots 12}a^{10}-\frac{10\cdots 65}{78\cdots 78}a^{9}-\frac{33\cdots 87}{45\cdots 16}a^{8}+\frac{53\cdots 35}{46\cdots 34}a^{7}-\frac{76\cdots 45}{15\cdots 56}a^{6}-\frac{11\cdots 53}{15\cdots 56}a^{5}+\frac{19\cdots 85}{39\cdots 39}a^{4}+\frac{33\cdots 61}{31\cdots 12}a^{3}-\frac{16\cdots 01}{39\cdots 39}a^{2}+\frac{33\cdots 09}{78\cdots 78}a-\frac{44\cdots 13}{39\cdots 39}$, $\frac{27\cdots 51}{15\cdots 56}a^{17}-\frac{51\cdots 15}{15\cdots 56}a^{16}+\frac{598508537524152}{39\cdots 39}a^{15}-\frac{41\cdots 55}{15\cdots 56}a^{14}+\frac{16\cdots 09}{15\cdots 56}a^{13}-\frac{11\cdots 31}{78\cdots 78}a^{12}+\frac{59\cdots 47}{78\cdots 78}a^{11}+\frac{46\cdots 45}{15\cdots 56}a^{10}-\frac{31\cdots 35}{78\cdots 78}a^{9}+\frac{86\cdots 93}{22\cdots 08}a^{8}-\frac{10\cdots 95}{78\cdots 78}a^{7}+\frac{84\cdots 85}{39\cdots 39}a^{6}-\frac{42\cdots 25}{78\cdots 78}a^{5}+\frac{30\cdots 09}{39\cdots 39}a^{4}-\frac{13\cdots 53}{15\cdots 56}a^{3}+\frac{22\cdots 86}{39\cdots 39}a^{2}+\frac{18\cdots 87}{78\cdots 78}a-\frac{56\cdots 98}{39\cdots 39}$, $\frac{10\cdots 87}{78\cdots 78}a^{17}+\frac{25\cdots 31}{31\cdots 12}a^{16}+\frac{25\cdots 87}{31\cdots 12}a^{15}-\frac{12\cdots 73}{78\cdots 78}a^{14}+\frac{12\cdots 25}{31\cdots 12}a^{13}+\frac{60\cdots 25}{31\cdots 12}a^{12}-\frac{10\cdots 07}{56\cdots 77}a^{11}+\frac{51\cdots 94}{39\cdots 39}a^{10}-\frac{41\cdots 13}{31\cdots 12}a^{9}-\frac{15\cdots 29}{22\cdots 08}a^{8}+\frac{31\cdots 17}{31\cdots 12}a^{7}-\frac{39\cdots 37}{39\cdots 39}a^{6}-\frac{63\cdots 49}{78\cdots 78}a^{5}+\frac{56\cdots 11}{15\cdots 56}a^{4}+\frac{93\cdots 29}{15\cdots 56}a^{3}-\frac{12\cdots 85}{31\cdots 12}a^{2}+\frac{57\cdots 55}{15\cdots 56}a-\frac{61\cdots 93}{78\cdots 78}$, $\frac{24\cdots 49}{31\cdots 12}a^{17}+\frac{20\cdots 65}{31\cdots 12}a^{16}+\frac{66\cdots 37}{15\cdots 56}a^{15}-\frac{28\cdots 85}{31\cdots 12}a^{14}+\frac{64\cdots 29}{31\cdots 12}a^{13}+\frac{14\cdots 71}{78\cdots 78}a^{12}-\frac{60\cdots 36}{39\cdots 39}a^{11}+\frac{26\cdots 05}{31\cdots 12}a^{10}-\frac{11\cdots 71}{15\cdots 56}a^{9}-\frac{30\cdots 33}{45\cdots 16}a^{8}+\frac{10\cdots 55}{15\cdots 56}a^{7}-\frac{31\cdots 61}{15\cdots 56}a^{6}-\frac{39\cdots 93}{15\cdots 56}a^{5}-\frac{10\cdots 65}{56\cdots 77}a^{4}+\frac{24\cdots 63}{31\cdots 12}a^{3}-\frac{63\cdots 85}{22\cdots 08}a^{2}+\frac{92\cdots 69}{39\cdots 39}a-\frac{13\cdots 19}{39\cdots 39}$, $\frac{35\cdots 74}{39\cdots 39}a^{17}+\frac{353064137604767}{92\cdots 68}a^{16}+\frac{17\cdots 83}{78\cdots 78}a^{15}-\frac{42\cdots 78}{39\cdots 39}a^{14}+\frac{22\cdots 29}{78\cdots 78}a^{13}+\frac{17\cdots 99}{15\cdots 56}a^{12}-\frac{93\cdots 94}{39\cdots 39}a^{11}+\frac{38\cdots 67}{39\cdots 39}a^{10}-\frac{17\cdots 91}{15\cdots 56}a^{9}-\frac{63\cdots 07}{13\cdots 24}a^{8}+\frac{40\cdots 60}{39\cdots 39}a^{7}-\frac{66\cdots 03}{15\cdots 56}a^{6}-\frac{33\cdots 75}{78\cdots 78}a^{5}+\frac{41\cdots 47}{15\cdots 56}a^{4}+\frac{85\cdots 27}{13\cdots 24}a^{3}-\frac{48\cdots 21}{15\cdots 56}a^{2}+\frac{76\cdots 85}{23\cdots 67}a-\frac{37\cdots 27}{39\cdots 39}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1783677.91642 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{6}\cdot 1783677.91642 \cdot 1}{2\cdot\sqrt{36644198070556426025390625}}\cr\approx \mathstrut & 0.580153628567 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^18 - 12*x^15 + 36*x^14 - 33*x^12 + 117*x^11 - 171*x^10 - 2*x^9 + 135*x^8 - 81*x^7 - 30*x^6 + 36*x^5 + 81*x^4 - 393*x^3 + 531*x^2 - 270*x + 44) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 12*x^15 + 36*x^14 - 33*x^12 + 117*x^11 - 171*x^10 - 2*x^9 + 135*x^8 - 81*x^7 - 30*x^6 + 36*x^5 + 81*x^4 - 393*x^3 + 531*x^2 - 270*x + 44, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 12*x^15 + 36*x^14 - 33*x^12 + 117*x^11 - 171*x^10 - 2*x^9 + 135*x^8 - 81*x^7 - 30*x^6 + 36*x^5 + 81*x^4 - 393*x^3 + 531*x^2 - 270*x + 44); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 12*x^15 + 36*x^14 - 33*x^12 + 117*x^11 - 171*x^10 - 2*x^9 + 135*x^8 - 81*x^7 - 30*x^6 + 36*x^5 + 81*x^4 - 393*x^3 + 531*x^2 - 270*x + 44); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\He_3:C_4$ (as 18T49):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 108
The 14 conjugacy class representatives for $\He_3:C_4$
Character table for $\He_3:C_4$

Intermediate fields

\(\Q(\sqrt{5}) \), 6.2.4100625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 18 sibling: data not computed
Degree 27 sibling: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{3}{,}\,{\href{/padicField/2.2.0.1}{2} }^{3}$ R R ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{3}$ ${\href{/padicField/11.3.0.1}{3} }^{5}{,}\,{\href{/padicField/11.1.0.1}{1} }^{3}$ ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.6.0.1}{6} }$ ${\href{/padicField/17.4.0.1}{4} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }^{3}$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }$ ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ ${\href{/padicField/31.3.0.1}{3} }^{6}$ ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.6.0.1}{6} }$ ${\href{/padicField/41.3.0.1}{3} }^{6}$ ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.6.0.1}{6} }$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.6.0.1}{6} }$ ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.2.9.36c15.10$x^{18} + 18 x^{17} + 162 x^{16} + 966 x^{15} + 4266 x^{14} + 14787 x^{13} + 41616 x^{12} + 97056 x^{11} + 189792 x^{10} + 312932 x^{9} + 435312 x^{8} + 508896 x^{7} + 495648 x^{6} + 396432 x^{5} + 254601 x^{4} + 126765 x^{3} + 46188 x^{2} + 11070 x + 1355$$9$$2$$36$18T49not computed
\(5\) Copy content Toggle raw display 5.3.2.3a1.2$x^{6} + 6 x^{4} + 6 x^{3} + 9 x^{2} + 18 x + 14$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
5.3.4.9a1.3$x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 486 x^{2} + 324 x + 86$$4$$3$$9$$C_{12}$$$[\ ]_{4}^{3}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)