Normalized defining polynomial
\( x^{18} - 5x^{16} - 48x^{14} + 58x^{12} + 756x^{10} + 853x^{8} - 2268x^{6} - 6053x^{4} - 4958x^{2} - 1369 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[6, 6]$ |
| |
| Discriminant: |
\(103514451522112291747997679616\)
\(\medspace = 2^{18}\cdot 19^{16}\cdot 37^{2}\)
|
| |
| Root discriminant: | \(40.92\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(19\), \(37\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{8405444771}a^{16}-\frac{730992133}{8405444771}a^{14}-\frac{2798027183}{8405444771}a^{12}+\frac{933627126}{8405444771}a^{10}-\frac{1304929637}{8405444771}a^{8}-\frac{2899868597}{8405444771}a^{6}-\frac{3132220840}{8405444771}a^{4}+\frac{3293144648}{8405444771}a^{2}-\frac{7628236}{227174183}$, $\frac{1}{8405444771}a^{17}-\frac{730992133}{8405444771}a^{15}-\frac{2798027183}{8405444771}a^{13}+\frac{933627126}{8405444771}a^{11}-\frac{1304929637}{8405444771}a^{9}-\frac{2899868597}{8405444771}a^{7}-\frac{3132220840}{8405444771}a^{5}+\frac{3293144648}{8405444771}a^{3}-\frac{7628236}{227174183}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{41747615}{8405444771}a^{16}-\frac{511350271}{8405444771}a^{14}+\frac{308409944}{8405444771}a^{12}+\frac{11187430123}{8405444771}a^{10}-\frac{12030859257}{8405444771}a^{8}-\frac{86220142927}{8405444771}a^{6}+\frac{23305455323}{8405444771}a^{4}+\frac{236223712412}{8405444771}a^{2}+\frac{3923129776}{227174183}$, $\frac{1620653394}{8405444771}a^{16}-\frac{10992174726}{8405444771}a^{14}-\frac{58063576335}{8405444771}a^{12}+\frac{196423480777}{8405444771}a^{10}+\frac{871630290255}{8405444771}a^{8}-\frac{150842070634}{8405444771}a^{6}-\frac{3358155470823}{8405444771}a^{4}-\frac{3891313811379}{8405444771}a^{2}-\frac{35423838013}{227174183}$, $\frac{130798098}{8405444771}a^{16}-\frac{890665171}{8405444771}a^{14}-\frac{4450775030}{8405444771}a^{12}+\frac{13975272010}{8405444771}a^{10}+\frac{67496661873}{8405444771}a^{8}+\frac{20604687297}{8405444771}a^{6}-\frac{249379265329}{8405444771}a^{4}-\frac{431597522672}{8405444771}a^{2}-\frac{5431849651}{227174183}$, $\frac{130798098}{8405444771}a^{16}-\frac{890665171}{8405444771}a^{14}-\frac{4450775030}{8405444771}a^{12}+\frac{13975272010}{8405444771}a^{10}+\frac{67496661873}{8405444771}a^{8}+\frac{20604687297}{8405444771}a^{6}-\frac{249379265329}{8405444771}a^{4}-\frac{431597522672}{8405444771}a^{2}-\frac{5659023834}{227174183}$, $\frac{1079672073}{8405444771}a^{16}-\frac{7959991096}{8405444771}a^{14}-\frac{33659536854}{8405444771}a^{12}+\frac{148134075873}{8405444771}a^{10}+\frac{484616823584}{8405444771}a^{8}-\frac{336975584821}{8405444771}a^{6}-\frac{1922262682955}{8405444771}a^{4}-\frac{1622920781656}{8405444771}a^{2}-\frac{10549307176}{227174183}$, $\frac{621644162}{8405444771}a^{16}-\frac{4350615468}{8405444771}a^{14}-\frac{21191061069}{8405444771}a^{12}+\frac{78820106362}{8405444771}a^{10}+\frac{313477653891}{8405444771}a^{8}-\frac{104939733069}{8405444771}a^{6}-\frac{1214490863328}{8405444771}a^{4}-\frac{1295071057408}{8405444771}a^{2}-\frac{11299377670}{227174183}$, $\frac{420799300}{8405444771}a^{16}-\frac{2865128347}{8405444771}a^{14}-\frac{15050845703}{8405444771}a^{12}+\frac{51867862297}{8405444771}a^{10}+\frac{225619587414}{8405444771}a^{8}-\frac{54069461411}{8405444771}a^{6}-\frac{875643658547}{8405444771}a^{4}-\frac{947583279011}{8405444771}a^{2}-\frac{7880663100}{227174183}$, $\frac{621644162}{8405444771}a^{16}-\frac{4350615468}{8405444771}a^{14}-\frac{21191061069}{8405444771}a^{12}+\frac{78820106362}{8405444771}a^{10}+\frac{313477653891}{8405444771}a^{8}-\frac{104939733069}{8405444771}a^{6}-\frac{1214490863328}{8405444771}a^{4}-\frac{1295071057408}{8405444771}a^{2}-\frac{11072203487}{227174183}$, $\frac{426579502}{8405444771}a^{17}-\frac{428179060}{8405444771}a^{16}-\frac{2455013849}{8405444771}a^{15}+\frac{2158086795}{8405444771}a^{14}-\frac{17328297210}{8405444771}a^{13}+\frac{18943091809}{8405444771}a^{12}+\frac{32326162306}{8405444771}a^{11}-\frac{19286664273}{8405444771}a^{10}+\frac{237479758697}{8405444771}a^{9}-\frac{250939440681}{8405444771}a^{8}+\frac{190385192027}{8405444771}a^{7}-\frac{353150459816}{8405444771}a^{6}-\frac{391554399914}{8405444771}a^{5}+\frac{133666908931}{8405444771}a^{4}-\frac{615962238814}{8405444771}a^{3}+\frac{505386350113}{8405444771}a^{2}-\frac{5889552289}{227174183}a+\frac{6170103047}{227174183}$, $\frac{606019088}{8405444771}a^{17}+\frac{579863592}{8405444771}a^{16}-\frac{4049704144}{8405444771}a^{15}-\frac{3998235868}{8405444771}a^{14}-\frac{22182637934}{8405444771}a^{13}-\frac{20242793118}{8405444771}a^{12}+\frac{71505810378}{8405444771}a^{11}+\frac{72284045540}{8405444771}a^{10}+\frac{335507426298}{8405444771}a^{9}+\frac{301992917734}{8405444771}a^{8}-\frac{27429114224}{8405444771}a^{7}-\frac{82295135674}{8405444771}a^{6}-\frac{1289020023554}{8405444771}a^{5}-\frac{1175482210934}{8405444771}a^{4}-\frac{1581608363332}{8405444771}a^{3}-\frac{1290421307920}{8405444771}a^{2}-\frac{15115118110}{227174183}a-\frac{11226675353}{227174183}$, $\frac{25049442189}{8405444771}a^{17}+\frac{53390057801}{8405444771}a^{16}-\frac{14244197554}{8405444771}a^{15}-\frac{32260632956}{8405444771}a^{14}-\frac{1256616844229}{8405444771}a^{13}-\frac{2673859844648}{8405444771}a^{12}-\frac{4133312050495}{8405444771}a^{11}-\frac{8722001809258}{8405444771}a^{10}+\frac{203785977731}{8405444771}a^{9}+\frac{594510832084}{8405444771}a^{8}+\frac{21410566114188}{8405444771}a^{7}+\frac{45338262119099}{8405444771}a^{6}+\frac{39335769265753}{8405444771}a^{5}+\frac{82729336408969}{8405444771}a^{4}+\frac{28337776145927}{8405444771}a^{3}+\frac{59351210145287}{8405444771}a^{2}+\frac{196941453154}{227174183}a+\frac{411482496155}{227174183}$
|
| |
| Regulator: | \( 31418398.4612 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{6}\cdot 31418398.4612 \cdot 1}{2\cdot\sqrt{103514451522112291747997679616}}\cr\approx \mathstrut & 0.192270536930 \end{aligned}\] (assuming GRH)
Galois group
$C_2^8:C_9$ (as 18T368):
| A solvable group of order 2304 |
| The 40 conjugacy class representatives for $C_2^8:C_9$ |
| Character table for $C_2^8:C_9$ |
Intermediate fields
| 3.3.361.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.9.0.1}{9} }^{2}$ | ${\href{/padicField/5.9.0.1}{9} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.9.0.1}{9} }^{2}$ | ${\href{/padicField/17.9.0.1}{9} }^{2}$ | R | ${\href{/padicField/23.9.0.1}{9} }^{2}$ | ${\href{/padicField/29.9.0.1}{9} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/41.9.0.1}{9} }^{2}$ | ${\href{/padicField/43.9.0.1}{9} }^{2}$ | ${\href{/padicField/47.9.0.1}{9} }^{2}$ | ${\href{/padicField/53.9.0.1}{9} }^{2}$ | ${\href{/padicField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.9.2.18a14.2 | $x^{18} + 2 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{10} + 4 x^{9} + 3 x^{8} + 2 x^{7} + 2 x^{6} + 2 x^{5} + 6 x^{4} + 2 x^{3} + 6 x + 5$ | $2$ | $9$ | $18$ | 18T368 | $$[2, 2, 2, 2, 2, 2, 2, 2]^{9}$$ |
|
\(19\)
| 19.1.9.8a1.1 | $x^{9} + 19$ | $9$ | $1$ | $8$ | $C_9$ | $$[\ ]_{9}$$ |
| 19.1.9.8a1.1 | $x^{9} + 19$ | $9$ | $1$ | $8$ | $C_9$ | $$[\ ]_{9}$$ | |
|
\(37\)
| $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 37.1.2.1a1.1 | $x^{2} + 37$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 37.1.2.1a1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 37.2.1.0a1.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 37.2.1.0a1.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 37.2.1.0a1.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |