Show commands: Magma
Group invariants
Abstract group: | $C_2^8:C_9$ |
| |
Order: | $2304=2^{8} \cdot 3^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $18$ |
| |
Transitive number $t$: | $368$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,18,15,14,11,9,7,5,3)(2,17,16,13,12,10,8,6,4)$, $(1,12,4,13,5,15,7,17,10)(2,11,3,14,6,16,8,18,9)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ $9$: $C_9$ $12$: $A_4$ $36$: $C_2^2 : C_9$ $576$: 12T166 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 6: None
Degree 9: $C_9$
Low degree siblings
18T368 x 20, 24T5077 x 21, 36T3083 x 21, 36T3084 x 21, 36T3408 x 21, 36T3409 x 63, 36T3410 x 63, 36T3411 x 126, 36T3412 x 126, 36T3413 x 126, 36T3414 x 126, 36T3462 x 7, 36T3463 x 7, 36T3464 x 63, 36T3465 x 63, 36T3466 x 42, 36T3467 x 126, 36T3468 x 126Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{18}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6},1^{6}$ | $3$ | $2$ | $6$ | $( 3, 4)( 5, 6)( 9,10)(11,12)(15,16)(17,18)$ |
2B | $2^{4},1^{10}$ | $9$ | $2$ | $4$ | $( 1, 2)( 7, 8)( 9,10)(15,16)$ |
2C | $2^{2},1^{14}$ | $9$ | $2$ | $2$ | $( 3, 4)(13,14)$ |
2D | $2^{6},1^{6}$ | $9$ | $2$ | $6$ | $( 5, 6)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
2E | $2^{6},1^{6}$ | $9$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(11,12)(17,18)$ |
2F | $2^{4},1^{10}$ | $9$ | $2$ | $4$ | $( 1, 2)( 5, 6)( 7, 8)(17,18)$ |
2G | $2^{6},1^{6}$ | $9$ | $2$ | $6$ | $( 3, 4)( 5, 6)( 9,10)(13,14)(15,16)(17,18)$ |
2H | $2^{2},1^{14}$ | $9$ | $2$ | $2$ | $(11,12)(13,14)$ |
2I | $2^{6},1^{6}$ | $9$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 7, 8)( 9,10)(11,12)(15,16)$ |
2J | $2^{6},1^{6}$ | $9$ | $2$ | $6$ | $( 3, 4)( 5, 6)( 7, 8)( 9,10)(13,14)(17,18)$ |
2K | $2^{4},1^{10}$ | $9$ | $2$ | $4$ | $( 1, 2)( 5, 6)(15,16)(17,18)$ |
2L | $2^{4},1^{10}$ | $9$ | $2$ | $4$ | $( 1, 2)( 3, 4)( 9,10)(11,12)$ |
2M | $2^{4},1^{10}$ | $9$ | $2$ | $4$ | $( 7, 8)(11,12)(13,14)(15,16)$ |
2N | $2^{6},1^{6}$ | $9$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)(13,14)(15,16)(17,18)$ |
2O | $2^{4},1^{10}$ | $9$ | $2$ | $4$ | $( 5, 6)( 7, 8)( 9,10)(17,18)$ |
2P | $2^{4},1^{10}$ | $9$ | $2$ | $4$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
2Q | $2^{4},1^{10}$ | $9$ | $2$ | $4$ | $( 1, 2)( 9,10)(11,12)(13,14)$ |
2R | $2^{2},1^{14}$ | $9$ | $2$ | $2$ | $( 5, 6)(11,12)$ |
2S | $2^{8},1^{2}$ | $9$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2T | $2^{4},1^{10}$ | $9$ | $2$ | $4$ | $( 1, 2)( 7, 8)(13,14)(17,18)$ |
2U | $2^{4},1^{10}$ | $9$ | $2$ | $4$ | $( 3, 4)( 9,10)(15,16)(17,18)$ |
2V | $2^{6},1^{6}$ | $9$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 9,10)(11,12)(13,14)$ |
2W | $2^{4},1^{10}$ | $9$ | $2$ | $4$ | $( 5, 6)( 7, 8)(11,12)(15,16)$ |
2X | $2^{4},1^{10}$ | $9$ | $2$ | $4$ | $( 3, 4)( 7, 8)( 9,10)(17,18)$ |
2Y | $2^{4},1^{10}$ | $9$ | $2$ | $4$ | $( 1, 2)(13,14)(15,16)(17,18)$ |
2Z | $2^{4},1^{10}$ | $9$ | $2$ | $4$ | $( 1, 2)( 9,10)(13,14)(15,16)$ |
2AA | $2^{2},1^{14}$ | $9$ | $2$ | $2$ | $(3,4)(7,8)$ |
2AB | $2^{6},1^{6}$ | $9$ | $2$ | $6$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(15,16)(17,18)$ |
2AC | $2^{6},1^{6}$ | $9$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)(11,12)(13,14)(17,18)$ |
3A1 | $3^{6}$ | $64$ | $3$ | $12$ | $( 1,14, 8)( 2,13, 7)( 3,16,10)( 4,15, 9)( 5,17,11)( 6,18,12)$ |
3A-1 | $3^{6}$ | $64$ | $3$ | $12$ | $( 1, 8,14)( 2, 7,13)( 3,10,16)( 4, 9,15)( 5,11,17)( 6,12,18)$ |
6A1 | $6^{2},3^{2}$ | $192$ | $6$ | $14$ | $( 1, 8,14)( 2, 7,13)( 3,10,16, 4, 9,15)( 5,12,17, 6,11,18)$ |
6A-1 | $6^{2},3^{2}$ | $192$ | $6$ | $14$ | $( 1,14, 8)( 2,13, 7)( 3,15, 9, 4,16,10)( 5,18,11, 6,17,12)$ |
9A1 | $9^{2}$ | $256$ | $9$ | $16$ | $( 1, 5,10,14,17, 3, 8,11,16)( 2, 6, 9,13,18, 4, 7,12,15)$ |
9A-1 | $9^{2}$ | $256$ | $9$ | $16$ | $( 1,16,11, 8, 3,17,14,10, 5)( 2,15,12, 7, 4,18,13, 9, 6)$ |
9A2 | $9^{2}$ | $256$ | $9$ | $16$ | $( 1,10,17, 8,16, 5,14, 3,11)( 2, 9,18, 7,15, 6,13, 4,12)$ |
9A-2 | $9^{2}$ | $256$ | $9$ | $16$ | $( 1,11, 3,14, 5,16, 8,17,10)( 2,12, 4,13, 6,15, 7,18, 9)$ |
9A4 | $9^{2}$ | $256$ | $9$ | $16$ | $( 1,17,16,14,11,10, 8, 5, 3)( 2,18,15,13,12, 9, 7, 6, 4)$ |
9A-4 | $9^{2}$ | $256$ | $9$ | $16$ | $( 1, 3, 5, 8,10,11,14,16,17)( 2, 4, 6, 7, 9,12,13,15,18)$ |
Malle's constant $a(G)$: $1/2$
Character table
40 x 40 character table
Regular extensions
Data not computed