Properties

Label 18T368
Order \(2304\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $368$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,18,15,14,11,9,7,5,3)(2,17,16,13,12,10,8,6,4), (1,12,4,13,5,15,7,17,10)(2,11,3,14,6,16,8,18,9)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
3:  $C_3$
9:  $C_9$
12:  $A_4$
36:  $C_2^2 : C_9$
576:  12T166

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: None

Degree 9: $C_9$

Low degree siblings

18T368 x 20

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 7, 8)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 7, 8)(11,12)(17,18)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 9,10)(11,12)(15,16)(17,18)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 7, 8)( 9,10)(11,12)(15,16)(17,18)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 7, 8)(11,12)(13,14)(17,18)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 5, 6)( 7, 8)( 9,10)(11,12)(15,16)$
$ 3, 3, 3, 3, 3, 3 $ $64$ $3$ $( 1,14, 7)( 2,13, 8)( 3,15, 9)( 4,16,10)( 5,18,11)( 6,17,12)$
$ 3, 3, 3, 3, 3, 3 $ $64$ $3$ $( 1, 7,14)( 2, 8,13)( 3, 9,15)( 4,10,16)( 5,11,18)( 6,12,17)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $(15,16)(17,18)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 7, 8)(15,16)(17,18)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $(11,12)(15,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 7, 8)(11,12)(15,16)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 9,10)(17,18)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 7, 8)( 9,10)(17,18)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 7, 8)( 9,10)(11,12)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)(13,14)(15,16)(17,18)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 7, 8)(11,12)(13,14)(15,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)(11,12)(13,14)(15,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 7, 8)( 9,10)(13,14)(17,18)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 9,10)(13,14)(17,18)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 5, 6)(11,12)(15,16)(17,18)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 5, 6)( 7, 8)(11,12)(15,16)(17,18)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 5, 6)( 7, 8)( 9,10)(11,12)(17,18)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 5, 6)(11,12)(13,14)(15,16)(17,18)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 3, 4)( 9,10)(15,16)(17,18)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 3, 4)( 7, 8)( 9,10)(15,16)(17,18)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 3, 4)( 7, 8)( 9,10)(11,12)(15,16)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 3, 4)( 9,10)(13,14)(15,16)(17,18)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $3$ $2$ $( 3, 4)( 5, 6)( 9,10)(11,12)(15,16)(17,18)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ $9$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(15,16)(17,18)$
$ 6, 6, 3, 3 $ $192$ $6$ $( 1,14, 7)( 2,13, 8)( 3,15,10, 4,16, 9)( 5,18,12, 6,17,11)$
$ 6, 6, 3, 3 $ $192$ $6$ $( 1, 7,14)( 2, 8,13)( 3, 9,15, 4,10,16)( 5,11,18, 6,12,17)$
$ 9, 9 $ $256$ $9$ $( 1,18,15,14,11, 9, 7, 5, 3)( 2,17,16,13,12,10, 8, 6, 4)$
$ 9, 9 $ $256$ $9$ $( 1,11, 3,14, 5,15, 7,18, 9)( 2,12, 4,13, 6,16, 8,17,10)$
$ 9, 9 $ $256$ $9$ $( 1, 5, 9,14,18, 3, 7,11,15)( 2, 6,10,13,17, 4, 8,12,16)$
$ 9, 9 $ $256$ $9$ $( 1,15,11, 7, 3,18,14, 9, 5)( 2,16,12, 8, 4,17,13,10, 6)$
$ 9, 9 $ $256$ $9$ $( 1, 9,18, 7,15, 5,14, 3,11)( 2,10,17, 8,16, 6,13, 4,12)$
$ 9, 9 $ $256$ $9$ $( 1, 3, 5, 7, 9,11,14,15,18)( 2, 4, 6, 8,10,12,13,16,17)$

Group invariants

Order:  $2304=2^{8} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.