Normalized defining polynomial
\( x^{18} - 24 x^{16} - 1944 x^{14} + 203652 x^{12} - 2350512 x^{10} + 27599616 x^{8} + \cdots + 2051320759488 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-24550556916950676185786873153998466351700592821547008\)
\(\medspace = -\,2^{12}\cdot 3^{21}\cdot 7^{15}\cdot 11^{9}\cdot 13^{15}\)
|
| |
| Root discriminant: | \(813.88\) |
| |
| Galois root discriminant: | $2^{2/3}3^{7/6}7^{5/6}11^{1/2}13^{5/6}\approx 813.8773527198483$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\), \(11\), \(13\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3003}) \) | ||
| $\Aut(K/\Q)$: | $S_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3003}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{6}a^{3}$, $\frac{1}{6}a^{4}$, $\frac{1}{12}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{72}a^{6}-\frac{1}{12}a^{4}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{72}a^{7}-\frac{1}{2}a$, $\frac{1}{432}a^{8}-\frac{1}{12}a^{4}-\frac{1}{12}a^{3}-\frac{5}{12}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{432}a^{9}-\frac{1}{12}a^{4}-\frac{1}{12}a^{3}-\frac{1}{2}a$, $\frac{1}{9504}a^{10}-\frac{1}{4752}a^{8}-\frac{1}{144}a^{7}+\frac{1}{264}a^{6}-\frac{19}{264}a^{4}-\frac{31}{132}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{28512}a^{11}-\frac{1}{1188}a^{9}+\frac{1}{792}a^{7}+\frac{25}{792}a^{5}-\frac{1}{44}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{6272640}a^{12}+\frac{1}{58080}a^{10}-\frac{547}{522720}a^{8}+\frac{17}{29040}a^{6}-\frac{391}{4840}a^{4}-\frac{1}{12}a^{3}-\frac{491}{1320}a^{2}-\frac{3}{40}$, $\frac{1}{6272640}a^{13}+\frac{1}{58080}a^{11}-\frac{547}{522720}a^{9}+\frac{17}{29040}a^{7}+\frac{37}{14520}a^{5}-\frac{1}{12}a^{4}-\frac{17}{440}a^{3}-\frac{1}{2}a^{2}-\frac{3}{40}a$, $\frac{1}{206997120}a^{14}+\frac{1}{22999680}a^{12}-\frac{19}{1437480}a^{10}+\frac{1213}{5749920}a^{8}-\frac{133}{319440}a^{6}-\frac{119}{7260}a^{4}-\frac{1}{12}a^{3}+\frac{13}{44}a^{2}-\frac{1}{2}a-\frac{11}{40}$, $\frac{1}{827988480}a^{15}+\frac{7}{137998080}a^{13}-\frac{1}{12545280}a^{12}+\frac{23}{22999680}a^{11}-\frac{1}{116160}a^{10}+\frac{101}{106480}a^{9}-\frac{221}{348480}a^{8}+\frac{421}{119790}a^{7}+\frac{1159}{174240}a^{6}-\frac{67}{19360}a^{5}-\frac{1247}{29040}a^{4}-\frac{107}{1760}a^{3}+\frac{347}{880}a^{2}-\frac{37}{80}a+\frac{3}{80}$, $\frac{1}{19\cdots 40}a^{16}+\frac{847007543069}{10\cdots 80}a^{14}-\frac{1}{12545280}a^{13}-\frac{10943641908217}{17\cdots 80}a^{12}-\frac{1}{116160}a^{11}-\frac{41\cdots 49}{13\cdots 60}a^{10}-\frac{221}{348480}a^{9}+\frac{12\cdots 67}{22\cdots 60}a^{8}-\frac{17}{58080}a^{7}+\frac{58\cdots 91}{13\cdots 40}a^{6}+\frac{391}{9680}a^{5}-\frac{534554874302837}{12\cdots 40}a^{4}-\frac{59}{2640}a^{3}+\frac{255764997259391}{18\cdots 40}a^{2}+\frac{23}{80}a+\frac{2719180801851}{14147594929820}$, $\frac{1}{63\cdots 20}a^{17}-\frac{127197967335403}{21\cdots 40}a^{15}-\frac{1}{413994240}a^{14}+\frac{246758948570933}{70\cdots 28}a^{13}-\frac{1}{45999360}a^{12}-\frac{37\cdots 89}{35\cdots 64}a^{11}+\frac{19}{2874960}a^{10}+\frac{24\cdots 05}{98\cdots 24}a^{9}+\frac{12097}{11499840}a^{8}+\frac{33\cdots 53}{89\cdots 84}a^{7}+\frac{133}{638880}a^{6}+\frac{34\cdots 78}{12\cdots 35}a^{5}-\frac{81}{2420}a^{4}-\frac{19\cdots 83}{12\cdots 40}a^{3}+\frac{19}{132}a^{2}-\frac{55688318621483}{373496506147248}a+\frac{31}{80}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{3}\times C_{6}\times C_{18}\times C_{18}\times C_{54}\times C_{54}$, which has order $17006112$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}\times C_{6}\times C_{18}\times C_{18}\times C_{54}\times C_{54}$, which has order $17006112$ (assuming GRH) |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1072548565843}{63\cdots 20}a^{17}-\frac{202480987}{16\cdots 92}a^{16}+\frac{16344613964551}{26\cdots 80}a^{15}+\frac{143683987}{53\cdots 64}a^{14}-\frac{78107057490497}{88\cdots 60}a^{13}+\frac{187453516}{695026094729373}a^{12}-\frac{17\cdots 47}{17\cdots 32}a^{11}-\frac{882909226577}{44\cdots 72}a^{10}+\frac{13\cdots 75}{12\cdots 28}a^{9}-\frac{418171477213}{24\cdots 04}a^{8}+\frac{20\cdots 21}{89\cdots 84}a^{7}-\frac{64326391991}{14040931206654}a^{6}+\frac{96\cdots 03}{40\cdots 20}a^{5}+\frac{18631670239}{1276448291514}a^{4}-\frac{27\cdots 57}{77\cdots 90}a^{3}-\frac{455231558327}{309442010064}a^{2}+\frac{11\cdots 91}{933741265368120}a-\frac{24644484157}{1172128826}$, $\frac{3269089479119}{37\cdots 60}a^{17}-\frac{1661206477}{80\cdots 60}a^{16}-\frac{2555874194689}{15\cdots 40}a^{15}+\frac{11868285287}{26\cdots 20}a^{14}-\frac{9532100194915}{52\cdots 48}a^{13}+\frac{12259934407}{27\cdots 20}a^{12}+\frac{17\cdots 21}{10\cdots 96}a^{11}-\frac{9231612028121}{22\cdots 60}a^{10}-\frac{302434086096977}{28\cdots 36}a^{9}+\frac{11967236593333}{37\cdots 60}a^{8}+\frac{551381472502633}{52\cdots 52}a^{7}-\frac{8510057717}{280818624133080}a^{6}-\frac{16\cdots 81}{23\cdots 60}a^{5}+\frac{724567509029}{5105793166056}a^{4}+\frac{20\cdots 91}{906278286974940}a^{3}-\frac{538243796181}{103147336688}a^{2}-\frac{248726907126971}{10985191357272}a+\frac{195164637156}{2930322065}$, $\frac{913966115}{14\cdots 92}a^{16}-\frac{30366796993}{24\cdots 20}a^{14}-\frac{2971338491713}{24\cdots 20}a^{12}+\frac{1239668347717}{10\cdots 68}a^{10}-\frac{14632333099019}{13\cdots 24}a^{8}+\frac{12831439124833}{61\cdots 92}a^{6}-\frac{908412335321}{31124708845604}a^{4}+\frac{501680465553}{321536248405}a^{2}-\frac{32344570319713}{1286144993620}$, $\frac{1969802575507}{10\cdots 80}a^{16}-\frac{6895528449479}{17\cdots 80}a^{14}-\frac{44980705167989}{11\cdots 80}a^{12}+\frac{81\cdots 87}{22\cdots 60}a^{10}-\frac{18\cdots 77}{74\cdots 20}a^{8}-\frac{972348436912881}{75\cdots 80}a^{6}-\frac{59\cdots 81}{41\cdots 28}a^{4}+\frac{92\cdots 01}{311247088456040}a^{2}-\frac{25\cdots 93}{14147594929820}$, $\frac{4958858493965}{70\cdots 28}a^{17}+\frac{4252683784027}{21\cdots 60}a^{16}-\frac{30144042297473}{23\cdots 76}a^{15}-\frac{2584409749231}{71\cdots 72}a^{14}-\frac{19\cdots 17}{13\cdots 20}a^{13}-\frac{75393991744711}{17\cdots 68}a^{12}+\frac{66\cdots 29}{49\cdots 20}a^{11}+\frac{17\cdots 87}{44\cdots 20}a^{10}-\frac{91\cdots 21}{10\cdots 60}a^{9}-\frac{31\cdots 67}{14\cdots 40}a^{8}+\frac{20\cdots 73}{16\cdots 60}a^{7}+\frac{20\cdots 19}{15\cdots 60}a^{6}-\frac{10\cdots 71}{22\cdots 40}a^{5}-\frac{93\cdots 73}{82\cdots 56}a^{4}+\frac{66\cdots 56}{427964746627055}a^{3}+\frac{27\cdots 93}{622494176912080}a^{2}-\frac{85\cdots 41}{622494176912080}a-\frac{12\cdots 27}{28295189859640}$, $\frac{102992673075995}{38\cdots 88}a^{17}+\frac{187076098829}{17\cdots 88}a^{16}-\frac{700146566472113}{32\cdots 40}a^{15}-\frac{257590341297167}{18\cdots 20}a^{14}-\frac{32\cdots 57}{53\cdots 40}a^{13}-\frac{15\cdots 29}{63\cdots 24}a^{12}+\frac{60\cdots 27}{13\cdots 60}a^{11}+\frac{29\cdots 13}{15\cdots 60}a^{10}+\frac{43\cdots 49}{22\cdots 60}a^{9}+\frac{14\cdots 79}{65\cdots 40}a^{8}+\frac{37\cdots 57}{13\cdots 40}a^{7}-\frac{59903351078331}{22\cdots 20}a^{6}-\frac{28\cdots 11}{12\cdots 40}a^{5}-\frac{37\cdots 61}{36\cdots 60}a^{4}+\frac{11\cdots 47}{373496506147248}a^{3}+\frac{58\cdots 63}{36617304524240}a^{2}-\frac{17\cdots 43}{14147594929820}a-\frac{11\cdots 23}{1664422932920}$, $\frac{554540843209921}{96\cdots 72}a^{16}-\frac{74\cdots 49}{80\cdots 60}a^{14}-\frac{64\cdots 23}{53\cdots 40}a^{12}+\frac{14\cdots 81}{13\cdots 60}a^{10}-\frac{20\cdots 81}{44\cdots 20}a^{8}+\frac{70\cdots 97}{75\cdots 80}a^{6}-\frac{55\cdots 71}{15\cdots 80}a^{4}+\frac{40\cdots 03}{311247088456040}a^{2}-\frac{58\cdots 87}{5659037971928}$, $\frac{10\cdots 71}{31\cdots 80}a^{17}+\frac{12\cdots 27}{65\cdots 20}a^{16}+\frac{18\cdots 31}{20\cdots 20}a^{15}-\frac{42\cdots 51}{32\cdots 60}a^{14}-\frac{50\cdots 69}{69\cdots 40}a^{13}-\frac{13\cdots 47}{32\cdots 76}a^{12}+\frac{12\cdots 71}{27\cdots 65}a^{11}+\frac{13\cdots 57}{40\cdots 20}a^{10}+\frac{43\cdots 91}{57\cdots 20}a^{9}+\frac{33\cdots 83}{22\cdots 40}a^{8}+\frac{89\cdots 87}{87\cdots 20}a^{7}+\frac{18\cdots 77}{41\cdots 80}a^{6}-\frac{11\cdots 03}{19\cdots 80}a^{5}-\frac{29\cdots 43}{37\cdots 80}a^{4}+\frac{29\cdots 17}{604185524649960}a^{3}+\frac{41\cdots 99}{11318075943856}a^{2}+\frac{20\cdots 83}{36617304524240}a-\frac{46\cdots 34}{321536248405}$
|
| |
| Regulator: | \( 2730395051431.8765 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 2730395051431.8765 \cdot 17006112}{2\cdot\sqrt{24550556916950676185786873153998466351700592821547008}}\cr\approx \mathstrut & 2.26145873999205 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3003}) \), 3.1.108108.1 x3, 3.1.24843.1, 6.0.224258431984587.4, 6.0.35097081010992.2, 9.1.259932343846602632901696.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | 6.2.96879642617341584.2 |
| Degree 9 sibling: | 9.1.259932343846602632901696.1 |
| Degree 12 sibling: | deg 12 |
| Degree 18 siblings: | 18.0.202694470132765384910848433830619515622399029248.2, deg 18 |
| Minimal sibling: | 6.2.96879642617341584.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{9}$ | R | R | R | ${\href{/padicField/17.2.0.1}{2} }^{9}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{9}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{6}$ | ${\href{/padicField/37.6.0.1}{6} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ | ${\href{/padicField/43.6.0.1}{6} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{9}$ | ${\href{/padicField/53.2.0.1}{2} }^{9}$ | ${\href{/padicField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(3\)
| 3.1.6.7a1.3 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ |
| 3.2.6.14a2.1 | $x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2624 x^{6} + 3264 x^{5} + 3126 x^{4} + 2264 x^{3} + 1200 x^{2} + 432 x + 91$ | $6$ | $2$ | $14$ | $D_6$ | $$[\frac{3}{2}]_{2}^{2}$$ | |
|
\(7\)
| 7.1.6.5a1.1 | $x^{6} + 7$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |
| 7.1.6.5a1.1 | $x^{6} + 7$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ | |
| 7.1.6.5a1.1 | $x^{6} + 7$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ | |
|
\(11\)
| 11.1.2.1a1.1 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 11.1.2.1a1.1 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 11.1.2.1a1.1 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(13\)
| 13.1.6.5a1.4 | $x^{6} + 52$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |
| 13.1.6.5a1.4 | $x^{6} + 52$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ | |
| 13.1.6.5a1.4 | $x^{6} + 52$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |