Normalized defining polynomial
\( x^{9} - 3x^{8} - 83x^{6} - 6x^{5} + 267x^{4} + 3011x^{3} + 2730x^{2} - 3006x + 30122 \)
Invariants
| Degree: | $9$ |
| |
| Signature: | $[1, 4]$ |
| |
| Discriminant: |
\(259932343846602632901696\)
\(\medspace = 2^{6}\cdot 3^{10}\cdot 7^{7}\cdot 11^{3}\cdot 13^{7}\)
|
| |
| Root discriminant: | \(399.62\) |
| |
| Galois root discriminant: | $2^{2/3}3^{7/6}7^{5/6}11^{1/2}13^{5/6}\approx 813.8773527198483$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\), \(11\), \(13\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{1001}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{11}a^{6}-\frac{4}{11}a^{5}+\frac{5}{11}a^{4}-\frac{3}{11}a^{3}-\frac{2}{11}a^{2}-\frac{4}{11}a-\frac{4}{11}$, $\frac{1}{11}a^{7}-\frac{5}{11}a^{4}-\frac{3}{11}a^{3}-\frac{1}{11}a^{2}+\frac{2}{11}a-\frac{5}{11}$, $\frac{1}{1203168857}a^{8}-\frac{43497853}{1203168857}a^{7}-\frac{7934934}{1203168857}a^{6}+\frac{175158149}{1203168857}a^{5}-\frac{91234551}{1203168857}a^{4}+\frac{469727749}{1203168857}a^{3}+\frac{188450226}{1203168857}a^{2}-\frac{521895148}{1203168857}a-\frac{65283890}{1203168857}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{9}\times C_{9}\times C_{54}$, which has order $4374$ (assuming GRH) |
| |
| Narrow class group: | $C_{9}\times C_{9}\times C_{54}$, which has order $4374$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{77248}{1203168857}a^{8}+\frac{332096}{1203168857}a^{7}+\frac{2061516}{1203168857}a^{6}-\frac{1513896}{1203168857}a^{5}+\frac{39052710}{1203168857}a^{4}-\frac{293508576}{1203168857}a^{3}-\frac{502595704}{1203168857}a^{2}-\frac{4824523724}{1203168857}a-\frac{14351007395}{1203168857}$, $\frac{4301932}{1203168857}a^{8}-\frac{445305}{1203168857}a^{7}-\frac{484963}{109378987}a^{6}-\frac{286075313}{1203168857}a^{5}-\frac{762295367}{1203168857}a^{4}-\frac{901815573}{1203168857}a^{3}+\frac{8053780655}{1203168857}a^{2}+\frac{25214371796}{1203168857}a+\frac{866147979}{1203168857}$, $\frac{9091405}{1203168857}a^{8}-\frac{42745588}{1203168857}a^{7}+\frac{9064723}{1203168857}a^{6}-\frac{452718384}{1203168857}a^{5}+\frac{575129283}{1203168857}a^{4}+\frac{6010373799}{1203168857}a^{3}-\frac{671079565}{1203168857}a^{2}+\frac{9622876837}{1203168857}a+\frac{24648432829}{1203168857}$, $\frac{1396329356}{1203168857}a^{8}+\frac{2290582806}{1203168857}a^{7}+\frac{9418142233}{1203168857}a^{6}-\frac{73175343292}{1203168857}a^{5}-\frac{342267031816}{1203168857}a^{4}-\frac{1195586972364}{1203168857}a^{3}-\frac{1096887812105}{1203168857}a^{2}-\frac{1130465774114}{1203168857}a-\frac{9471376212293}{1203168857}$
|
| |
| Regulator: | \( 211502.74195413003 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 211502.74195413003 \cdot 4374}{2\cdot\sqrt{259932343846602632901696}}\cr\approx \mathstrut & 2.82803052423764 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| 3.1.108108.1, 3.1.24843.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | 18.0.202694470132765384910848433830619515622399029248.2, 18.0.24550556916950676185786873153998466351700592821547008.1, some data not computed |
| Minimal sibling: | 6.2.96879642617341584.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | R | R | ${\href{/padicField/17.2.0.1}{2} }^{4}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }$ | ${\href{/padicField/23.2.0.1}{2} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ | ${\href{/padicField/31.3.0.1}{3} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.2.0.1}{2} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(3\)
| 3.1.3.3a1.2 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ |
| 3.1.6.7a2.1 | $x^{6} + 6 x^{2} + 3$ | $6$ | $1$ | $7$ | $D_{6}$ | $$[\frac{3}{2}]_{2}^{2}$$ | |
|
\(7\)
| 7.1.3.2a1.1 | $x^{3} + 7$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 7.1.6.5a1.1 | $x^{6} + 7$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ | |
|
\(11\)
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 11.1.2.1a1.1 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(13\)
| 13.1.3.2a1.3 | $x^{3} + 52$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 13.1.6.5a1.4 | $x^{6} + 52$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |