Normalized defining polynomial
\( x^{16} - 12x^{14} + 62x^{12} - 220x^{10} + 551x^{8} - 740x^{6} + 398x^{4} - 96x^{2} + 1 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[8, 4]$ |
| |
Discriminant: |
\(4294967296000000000000\)
\(\medspace = 2^{44}\cdot 5^{12}\)
|
| |
Root discriminant: | \(22.49\) |
| |
Galois root discriminant: | $2^{49/16}5^{3/4}\approx 27.93391870957562$ | ||
Ramified primes: |
\(2\), \(5\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{10}-\frac{1}{4}a^{6}-\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{11}-\frac{1}{4}a^{7}-\frac{1}{4}a^{3}-\frac{1}{4}a$, $\frac{1}{2024804}a^{14}-\frac{197153}{2024804}a^{12}+\frac{160327}{1012402}a^{10}-\frac{175755}{2024804}a^{8}+\frac{35479}{1012402}a^{6}+\frac{132817}{2024804}a^{4}-\frac{935275}{2024804}a^{2}-\frac{67283}{1012402}$, $\frac{1}{2024804}a^{15}-\frac{197153}{2024804}a^{13}+\frac{160327}{1012402}a^{11}-\frac{175755}{2024804}a^{9}+\frac{35479}{1012402}a^{7}+\frac{132817}{2024804}a^{5}-\frac{935275}{2024804}a^{3}-\frac{67283}{1012402}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{10276}{506201}a^{14}-\frac{127826}{506201}a^{12}+\frac{684396}{506201}a^{10}-\frac{2464217}{506201}a^{8}+\frac{6309380}{506201}a^{6}-\frac{9002022}{506201}a^{4}+\frac{4908296}{506201}a^{2}-\frac{365285}{506201}$, $\frac{6681}{2024804}a^{14}-\frac{44191}{2024804}a^{12}+\frac{23371}{1012402}a^{10}+\frac{167165}{2024804}a^{8}-\frac{879271}{1012402}a^{6}+\frac{6560637}{2024804}a^{4}-\frac{8126347}{2024804}a^{2}+\frac{247483}{506201}$, $\frac{81859}{2024804}a^{15}-\frac{1059547}{2024804}a^{13}+\frac{1485886}{506201}a^{11}-\frac{22156567}{2024804}a^{9}+\frac{14779991}{506201}a^{7}-\frac{93059259}{2024804}a^{5}+\frac{67018753}{2024804}a^{3}-\frac{3922616}{506201}a$, $\frac{111233}{2024804}a^{15}-\frac{1292329}{2024804}a^{13}+\frac{3229167}{1012402}a^{11}-\frac{22546139}{2024804}a^{9}+\frac{27427465}{1012402}a^{7}-\frac{68179959}{2024804}a^{5}+\frac{31357505}{2024804}a^{3}-\frac{2439159}{1012402}a$, $\frac{999309}{2024804}a^{15}-\frac{17671}{506201}a^{14}-\frac{5971747}{1012402}a^{13}+\frac{215381}{506201}a^{12}+\frac{61358593}{2024804}a^{11}-\frac{2256685}{1012402}a^{10}-\frac{216683559}{2024804}a^{9}+\frac{8039955}{1012402}a^{8}+\frac{539436007}{2024804}a^{7}-\frac{10162961}{506201}a^{6}-\frac{711384951}{2024804}a^{5}+\frac{13912257}{506201}a^{4}+\frac{90115574}{506201}a^{3}-\frac{7304939}{506201}a^{2}-\frac{81205203}{2024804}a+\frac{3110383}{1012402}$, $\frac{154747}{1012402}a^{15}-\frac{17671}{506201}a^{14}-\frac{3745449}{2024804}a^{13}+\frac{215381}{506201}a^{12}+\frac{19524865}{2024804}a^{11}-\frac{2256685}{1012402}a^{10}-\frac{34813325}{1012402}a^{9}+\frac{8039955}{1012402}a^{8}+\frac{175702815}{2024804}a^{7}-\frac{10162961}{506201}a^{6}-\frac{120216541}{1012402}a^{5}+\frac{13912257}{506201}a^{4}+\frac{134072647}{2024804}a^{3}-\frac{7304939}{506201}a^{2}-\frac{33091595}{2024804}a+\frac{3110383}{1012402}$, $\frac{58201}{1012402}a^{15}+\frac{23615}{1012402}a^{14}-\frac{1393573}{2024804}a^{13}-\frac{118749}{506201}a^{12}+\frac{7122987}{2024804}a^{11}+\frac{995853}{1012402}a^{10}-\frac{6230986}{506201}a^{9}-\frac{1574766}{506201}a^{8}+\frac{61727921}{2024804}a^{7}+\frac{3111136}{506201}a^{6}-\frac{19798466}{506201}a^{5}-\frac{2985147}{1012402}a^{4}+\frac{35696389}{2024804}a^{3}-\frac{2994299}{1012402}a^{2}-\frac{12522813}{2024804}a+\frac{583095}{506201}$, $\frac{156095}{1012402}a^{15}+\frac{47785}{2024804}a^{14}-\frac{3758887}{2024804}a^{13}-\frac{555495}{2024804}a^{12}+\frac{19416741}{2024804}a^{11}+\frac{1392163}{1012402}a^{10}-\frac{17161398}{506201}a^{9}-\frac{9689703}{2024804}a^{8}+\frac{171611997}{2024804}a^{7}+\frac{11739489}{1012402}a^{6}-\frac{56896883}{506201}a^{5}-\frac{29447451}{2024804}a^{4}+\frac{115228991}{2024804}a^{3}+\frac{11506837}{2024804}a^{2}-\frac{26354801}{2024804}a-\frac{624003}{506201}$, $\frac{5138}{506201}a^{15}-\frac{2257}{506201}a^{14}-\frac{63913}{506201}a^{13}+\frac{23642}{506201}a^{12}+\frac{342198}{506201}a^{11}-\frac{203497}{1012402}a^{10}-\frac{2464217}{1012402}a^{9}+\frac{323652}{506201}a^{8}+\frac{3154690}{506201}a^{7}-\frac{698891}{506201}a^{6}-\frac{4501011}{506201}a^{5}+\frac{409224}{506201}a^{4}+\frac{5414497}{1012402}a^{3}+\frac{621211}{1012402}a^{2}-\frac{941944}{506201}a-\frac{516477}{1012402}$, $\frac{227635}{2024804}a^{15}-\frac{23615}{1012402}a^{14}-\frac{1342951}{1012402}a^{13}+\frac{118749}{506201}a^{12}+\frac{13581321}{2024804}a^{11}-\frac{995853}{1012402}a^{10}-\frac{47470083}{2024804}a^{9}+\frac{1574766}{506201}a^{8}+\frac{116582851}{2024804}a^{7}-\frac{3111136}{506201}a^{6}-\frac{147373823}{2024804}a^{5}+\frac{2985147}{1012402}a^{4}+\frac{33526947}{1012402}a^{3}+\frac{2994299}{1012402}a^{2}-\frac{15376327}{2024804}a-\frac{583095}{506201}$, $\frac{107025}{2024804}a^{15}+\frac{13831}{1012402}a^{14}-\frac{333986}{506201}a^{13}-\frac{342913}{2024804}a^{12}+\frac{7184369}{2024804}a^{11}+\frac{1795629}{2024804}a^{10}-\frac{26072167}{2024804}a^{9}-\frac{3127409}{1012402}a^{8}+\frac{67577281}{2024804}a^{7}+\frac{15484949}{2024804}a^{6}-\frac{98600051}{2024804}a^{5}-\frac{9629321}{1012402}a^{4}+\frac{15666598}{506201}a^{3}+\frac{3899467}{2024804}a^{2}-\frac{16199931}{2024804}a+\frac{743663}{2024804}$
|
| |
Regulator: | \( 131049.544859 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 131049.544859 \cdot 1}{2\cdot\sqrt{4294967296000000000000}}\cr\approx \mathstrut & 0.398919282660 \end{aligned}\] (assuming GRH)
Galois group
$C_2^5:C_4$ (as 16T227):
A solvable group of order 128 |
The 26 conjugacy class representatives for $C_2^5:C_4$ |
Character table for $C_2^5:C_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.1600.1, 4.4.8000.1, 4.2.2000.1, 8.4.3276800000.2, 8.4.3276800000.1, 8.4.1024000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.44d13.77 | $x^{16} + 12 x^{15} + 68 x^{14} + 256 x^{13} + 716 x^{12} + 1580 x^{11} + 2844 x^{10} + 4268 x^{9} + 5401 x^{8} + 5796 x^{7} + 5272 x^{6} + 4044 x^{5} + 2592 x^{4} + 1360 x^{3} + 576 x^{2} + 188 x + 43$ | $8$ | $2$ | $44$ | 16T227 | $$[2, 2, 3, 3, \frac{7}{2}]^{4}$$ |
\(5\)
| 5.1.4.3a1.4 | $x^{4} + 20$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
5.1.4.3a1.4 | $x^{4} + 20$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |