/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 12*x^14 + 62*x^12 - 220*x^10 + 551*x^8 - 740*x^6 + 398*x^4 - 96*x^2 + 1, 16, 227, [8, 4], 4294967296000000000000, [2, 5], [1, a, a^2, a^3, a^4, a^5, 1/2*a^6 - 1/2*a^5 - 1/2*a^3 - 1/2*a - 1/2, 1/2*a^7 - 1/2*a^5 - 1/2*a^4 - 1/2*a^3 - 1/2*a^2 - 1/2, 1/2*a^8 - 1/2*a^4 - 1/2, 1/2*a^9 - 1/2*a^5 - 1/2*a, 1/2*a^10 - 1/2*a^5 - 1/2*a^3 - 1/2*a^2 - 1/2*a - 1/2, 1/2*a^11 - 1/2*a^5 - 1/2*a^4 - 1/2*a^2 - 1/2, 1/4*a^12 - 1/4*a^10 - 1/4*a^6 - 1/4*a^2 - 1/4, 1/4*a^13 - 1/4*a^11 - 1/4*a^7 - 1/4*a^3 - 1/4*a, 1/2024804*a^14 - 197153/2024804*a^12 + 160327/1012402*a^10 - 175755/2024804*a^8 + 35479/1012402*a^6 + 132817/2024804*a^4 - 935275/2024804*a^2 - 67283/1012402, 1/2024804*a^15 - 197153/2024804*a^13 + 160327/1012402*a^11 - 175755/2024804*a^9 + 35479/1012402*a^7 + 132817/2024804*a^5 - 935275/2024804*a^3 - 67283/1012402*a], 0, 1, [], 1, [ (10276)/(506201)*a^(14) - (127826)/(506201)*a^(12) + (684396)/(506201)*a^(10) - (2464217)/(506201)*a^(8) + (6309380)/(506201)*a^(6) - (9002022)/(506201)*a^(4) + (4908296)/(506201)*a^(2) - (365285)/(506201) , (6681)/(2024804)*a^(14) - (44191)/(2024804)*a^(12) + (23371)/(1012402)*a^(10) + (167165)/(2024804)*a^(8) - (879271)/(1012402)*a^(6) + (6560637)/(2024804)*a^(4) - (8126347)/(2024804)*a^(2) + (247483)/(506201) , (81859)/(2024804)*a^(15) - (1059547)/(2024804)*a^(13) + (1485886)/(506201)*a^(11) - (22156567)/(2024804)*a^(9) + (14779991)/(506201)*a^(7) - (93059259)/(2024804)*a^(5) + (67018753)/(2024804)*a^(3) - (3922616)/(506201)*a , (111233)/(2024804)*a^(15) - (1292329)/(2024804)*a^(13) + (3229167)/(1012402)*a^(11) - (22546139)/(2024804)*a^(9) + (27427465)/(1012402)*a^(7) - (68179959)/(2024804)*a^(5) + (31357505)/(2024804)*a^(3) - (2439159)/(1012402)*a , (999309)/(2024804)*a^(15) - (17671)/(506201)*a^(14) - (5971747)/(1012402)*a^(13) + (215381)/(506201)*a^(12) + (61358593)/(2024804)*a^(11) - (2256685)/(1012402)*a^(10) - (216683559)/(2024804)*a^(9) + (8039955)/(1012402)*a^(8) + (539436007)/(2024804)*a^(7) - (10162961)/(506201)*a^(6) - (711384951)/(2024804)*a^(5) + (13912257)/(506201)*a^(4) + (90115574)/(506201)*a^(3) - (7304939)/(506201)*a^(2) - (81205203)/(2024804)*a + (3110383)/(1012402) , (154747)/(1012402)*a^(15) - (17671)/(506201)*a^(14) - (3745449)/(2024804)*a^(13) + (215381)/(506201)*a^(12) + (19524865)/(2024804)*a^(11) - (2256685)/(1012402)*a^(10) - (34813325)/(1012402)*a^(9) + (8039955)/(1012402)*a^(8) + (175702815)/(2024804)*a^(7) - (10162961)/(506201)*a^(6) - (120216541)/(1012402)*a^(5) + (13912257)/(506201)*a^(4) + (134072647)/(2024804)*a^(3) - (7304939)/(506201)*a^(2) - (33091595)/(2024804)*a + (3110383)/(1012402) , (58201)/(1012402)*a^(15) + (23615)/(1012402)*a^(14) - (1393573)/(2024804)*a^(13) - (118749)/(506201)*a^(12) + (7122987)/(2024804)*a^(11) + (995853)/(1012402)*a^(10) - (6230986)/(506201)*a^(9) - (1574766)/(506201)*a^(8) + (61727921)/(2024804)*a^(7) + (3111136)/(506201)*a^(6) - (19798466)/(506201)*a^(5) - (2985147)/(1012402)*a^(4) + (35696389)/(2024804)*a^(3) - (2994299)/(1012402)*a^(2) - (12522813)/(2024804)*a + (583095)/(506201) , (156095)/(1012402)*a^(15) + (47785)/(2024804)*a^(14) - (3758887)/(2024804)*a^(13) - (555495)/(2024804)*a^(12) + (19416741)/(2024804)*a^(11) + (1392163)/(1012402)*a^(10) - (17161398)/(506201)*a^(9) - (9689703)/(2024804)*a^(8) + (171611997)/(2024804)*a^(7) + (11739489)/(1012402)*a^(6) - (56896883)/(506201)*a^(5) - (29447451)/(2024804)*a^(4) + (115228991)/(2024804)*a^(3) + (11506837)/(2024804)*a^(2) - (26354801)/(2024804)*a - (624003)/(506201) , (5138)/(506201)*a^(15) - (2257)/(506201)*a^(14) - (63913)/(506201)*a^(13) + (23642)/(506201)*a^(12) + (342198)/(506201)*a^(11) - (203497)/(1012402)*a^(10) - (2464217)/(1012402)*a^(9) + (323652)/(506201)*a^(8) + (3154690)/(506201)*a^(7) - (698891)/(506201)*a^(6) - (4501011)/(506201)*a^(5) + (409224)/(506201)*a^(4) + (5414497)/(1012402)*a^(3) + (621211)/(1012402)*a^(2) - (941944)/(506201)*a - (516477)/(1012402) , (227635)/(2024804)*a^(15) - (23615)/(1012402)*a^(14) - (1342951)/(1012402)*a^(13) + (118749)/(506201)*a^(12) + (13581321)/(2024804)*a^(11) - (995853)/(1012402)*a^(10) - (47470083)/(2024804)*a^(9) + (1574766)/(506201)*a^(8) + (116582851)/(2024804)*a^(7) - (3111136)/(506201)*a^(6) - (147373823)/(2024804)*a^(5) + (2985147)/(1012402)*a^(4) + (33526947)/(1012402)*a^(3) + (2994299)/(1012402)*a^(2) - (15376327)/(2024804)*a - (583095)/(506201) , (107025)/(2024804)*a^(15) + (13831)/(1012402)*a^(14) - (333986)/(506201)*a^(13) - (342913)/(2024804)*a^(12) + (7184369)/(2024804)*a^(11) + (1795629)/(2024804)*a^(10) - (26072167)/(2024804)*a^(9) - (3127409)/(1012402)*a^(8) + (67577281)/(2024804)*a^(7) + (15484949)/(2024804)*a^(6) - (98600051)/(2024804)*a^(5) - (9629321)/(1012402)*a^(4) + (15666598)/(506201)*a^(3) + (3899467)/(2024804)*a^(2) - (16199931)/(2024804)*a + (743663)/(2024804) ], 131049.544859, [[x^2 - x - 1, 1], [x^4 - 2*x^2 - 4, 1], [x^4 - 10*x^2 + 20, 1], [x^4 - 5, 1], [x^8 - 6*x^6 + 9*x^4 - 10*x^2 + 5, 1], [x^8 - 2*x^6 + x^4 - 10*x^2 + 5, 1], [x^8 - 6*x^6 + 6*x^4 - 6*x^2 + 1, 1]]]