Normalized defining polynomial
\( x^{16} - 16x^{14} - 76x^{12} + 528x^{10} + 734x^{8} - 3184x^{6} - 2844x^{4} + 1392x^{2} + 841 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[8, 4]$ |
| |
Discriminant: |
\(3612067495936000000000000\)
\(\medspace = 2^{44}\cdot 5^{12}\cdot 29^{2}\)
|
| |
Root discriminant: | \(34.27\) |
| |
Galois root discriminant: | $2^{23/8}5^{3/4}29^{1/2}\approx 132.0954138186518$ | ||
Ramified primes: |
\(2\), \(5\), \(29\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_4$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{3}+\frac{1}{4}a$, $\frac{1}{16}a^{8}-\frac{1}{8}a^{4}-\frac{7}{16}$, $\frac{1}{16}a^{9}-\frac{1}{8}a^{5}-\frac{7}{16}a$, $\frac{1}{16}a^{10}-\frac{1}{8}a^{6}-\frac{7}{16}a^{2}$, $\frac{1}{32}a^{11}-\frac{1}{32}a^{10}-\frac{1}{32}a^{9}-\frac{1}{32}a^{8}-\frac{1}{16}a^{7}+\frac{1}{16}a^{6}+\frac{1}{16}a^{5}+\frac{1}{16}a^{4}-\frac{7}{32}a^{3}+\frac{7}{32}a^{2}+\frac{7}{32}a+\frac{7}{32}$, $\frac{1}{352}a^{12}+\frac{1}{44}a^{10}-\frac{1}{32}a^{8}+\frac{5}{44}a^{6}-\frac{7}{32}a^{4}-\frac{5}{22}a^{2}+\frac{87}{352}$, $\frac{1}{352}a^{13}-\frac{3}{352}a^{11}-\frac{1}{32}a^{10}-\frac{1}{32}a^{8}-\frac{13}{176}a^{7}+\frac{1}{16}a^{6}-\frac{1}{32}a^{5}+\frac{1}{16}a^{4}+\frac{85}{352}a^{3}+\frac{7}{32}a^{2}-\frac{39}{176}a+\frac{7}{32}$, $\frac{1}{579018176}a^{14}-\frac{469903}{579018176}a^{12}+\frac{1283145}{579018176}a^{10}+\frac{9000185}{579018176}a^{8}-\frac{29736765}{579018176}a^{6}+\frac{105307155}{579018176}a^{4}-\frac{112652909}{579018176}a^{2}-\frac{3413185}{19966144}$, $\frac{1}{579018176}a^{15}-\frac{469903}{579018176}a^{13}+\frac{1283145}{579018176}a^{11}+\frac{9000185}{579018176}a^{9}-\frac{29736765}{579018176}a^{7}+\frac{105307155}{579018176}a^{5}-\frac{112652909}{579018176}a^{3}-\frac{3413185}{19966144}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{2027}{4991536}a^{14}-\frac{63475}{9983072}a^{12}-\frac{165839}{4991536}a^{10}+\frac{2053511}{9983072}a^{8}+\frac{1933301}{4991536}a^{6}-\frac{12427565}{9983072}a^{4}-\frac{10142721}{4991536}a^{2}+\frac{10017577}{9983072}$, $\frac{276855}{579018176}a^{14}-\frac{5073335}{579018176}a^{12}-\frac{12150885}{579018176}a^{10}+\frac{212912529}{579018176}a^{8}+\frac{30760141}{579018176}a^{6}-\frac{1557383365}{579018176}a^{4}-\frac{315698015}{579018176}a^{2}+\frac{44289607}{19966144}$, $\frac{797063}{579018176}a^{14}-\frac{12941421}{579018176}a^{12}-\frac{5027819}{52638016}a^{10}+\frac{403028735}{579018176}a^{8}+\frac{24616767}{52638016}a^{6}-\frac{2054845791}{579018176}a^{4}-\frac{44309763}{579018176}a^{2}+\frac{2764275}{1815104}$, $\frac{964919}{579018176}a^{14}-\frac{1440657}{52638016}a^{12}-\frac{66480361}{579018176}a^{10}+\frac{533943865}{579018176}a^{8}+\frac{492053893}{579018176}a^{6}-\frac{3096232345}{579018176}a^{4}-\frac{1672465587}{579018176}a^{2}+\frac{50926295}{19966144}$, $\frac{652215}{289509088}a^{14}-\frac{11031303}{289509088}a^{12}-\frac{39943907}{289509088}a^{10}+\frac{385560801}{289509088}a^{8}+\frac{196422497}{289509088}a^{6}-\frac{2238408093}{289509088}a^{4}-\frac{736354757}{289509088}a^{2}+\frac{33965407}{9983072}$, $\frac{29969}{72377272}a^{14}-\frac{1657625}{289509088}a^{12}-\frac{1627733}{36188636}a^{10}+\frac{41513469}{289509088}a^{8}+\frac{44653177}{72377272}a^{6}-\frac{288505255}{289509088}a^{4}-\frac{19381399}{9047159}a^{2}+\frac{23418063}{9983072}$, $\frac{130753}{579018176}a^{14}-\frac{1147721}{579018176}a^{12}-\frac{25067195}{579018176}a^{10}+\frac{1029539}{579018176}a^{8}+\frac{547734731}{579018176}a^{6}-\frac{61013699}{579018176}a^{4}-\frac{2552867345}{579018176}a^{2}-\frac{16866499}{19966144}$, $\frac{11057}{144754544}a^{15}-\frac{321083}{579018176}a^{14}-\frac{90399}{72377272}a^{13}+\frac{526957}{52638016}a^{12}-\frac{2179377}{289509088}a^{11}+\frac{16509639}{579018176}a^{10}+\frac{19734567}{289509088}a^{9}-\frac{252381663}{579018176}a^{8}+\frac{22951129}{72377272}a^{7}-\frac{214369173}{579018176}a^{6}-\frac{60527737}{144754544}a^{5}+\frac{1799494313}{579018176}a^{4}-\frac{855011933}{289509088}a^{3}+\frac{2025721881}{579018176}a^{2}-\frac{21981573}{9983072}a-\frac{326461}{19966144}$, $\frac{228007}{579018176}a^{15}+\frac{295283}{579018176}a^{14}-\frac{4716443}{579018176}a^{13}-\frac{5492187}{579018176}a^{12}-\frac{985727}{579018176}a^{11}-\frac{822609}{52638016}a^{10}+\frac{209520095}{579018176}a^{9}+\frac{197708603}{579018176}a^{8}-\frac{285811391}{579018176}a^{7}-\frac{25710721}{52638016}a^{6}-\frac{1459060677}{579018176}a^{5}-\frac{1138472893}{579018176}a^{4}+\frac{1458179751}{579018176}a^{3}+\frac{1909779939}{579018176}a^{2}+\frac{61451781}{19966144}a+\frac{3727411}{1815104}$, $\frac{53495}{36188636}a^{15}-\frac{197161}{289509088}a^{14}-\frac{6839849}{289509088}a^{13}+\frac{1407377}{144754544}a^{12}-\frac{16375957}{144754544}a^{11}+\frac{20117497}{289509088}a^{10}+\frac{225973233}{289509088}a^{9}-\frac{37613637}{144754544}a^{8}+\frac{85320401}{72377272}a^{7}-\frac{276813407}{289509088}a^{6}-\frac{1290117767}{289509088}a^{5}+\frac{197492263}{144754544}a^{4}-\frac{746230849}{144754544}a^{3}+\frac{1045831359}{289509088}a^{2}-\frac{6388165}{9983072}a+\frac{6535153}{4991536}$, $\frac{50751}{52638016}a^{15}-\frac{602489}{289509088}a^{14}-\frac{6965947}{579018176}a^{13}+\frac{7689139}{289509088}a^{12}-\frac{67007163}{579018176}a^{11}+\frac{71365917}{289509088}a^{10}+\frac{5294971}{52638016}a^{9}-\frac{97713815}{289509088}a^{8}+\frac{627700575}{579018176}a^{7}-\frac{811309607}{289509088}a^{6}+\frac{59600661}{52638016}a^{5}-\frac{413496323}{289509088}a^{4}+\frac{905993415}{579018176}a^{3}+\frac{804030451}{289509088}a^{2}+\frac{16230151}{19966144}a+\frac{17749923}{9983072}$
|
| |
Regulator: | \( 1828598.13777 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 1828598.13777 \cdot 1}{2\cdot\sqrt{3612067495936000000000000}}\cr\approx \mathstrut & 0.191941899210 \end{aligned}\] (assuming GRH)
Galois group
$(C_2^3\times C_4):C_4$ (as 16T292):
A solvable group of order 128 |
The 26 conjugacy class representatives for $(C_2^3\times C_4):C_4$ |
Character table for $(C_2^3\times C_4):C_4$ |
Intermediate fields
\(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), 4.4.8000.1, \(\Q(\zeta_{20})^+\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.8.11866206109696000000000000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.44d1.101 | $x^{16} + 8 x^{15} + 36 x^{14} + 116 x^{13} + 290 x^{12} + 588 x^{11} + 984 x^{10} + 1376 x^{9} + 1613 x^{8} + 1596 x^{7} + 1332 x^{6} + 944 x^{5} + 560 x^{4} + 284 x^{3} + 124 x^{2} + 60 x + 17$ | $8$ | $2$ | $44$ | 16T86 | $$[2, 2, 3, \frac{7}{2}]^{4}$$ |
\(5\)
| 5.4.4.12a1.4 | $x^{16} + 16 x^{14} + 16 x^{13} + 104 x^{12} + 192 x^{11} + 448 x^{10} + 864 x^{9} + 1432 x^{8} + 2048 x^{7} + 2624 x^{6} + 2752 x^{5} + 2208 x^{4} + 1280 x^{3} + 512 x^{2} + 128 x + 21$ | $4$ | $4$ | $12$ | $C_4^2$ | $$[\ ]_{4}^{4}$$ |
\(29\)
| 29.2.2.2a1.1 | $x^{4} + 48 x^{3} + 580 x^{2} + 125 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
29.4.1.0a1.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
29.4.1.0a1.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
29.4.1.0a1.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |