Properties

Label 16.8.274...449.1
Degree $16$
Signature $[8, 4]$
Discriminant $2.747\times 10^{25}$
Root discriminant \(38.90\)
Ramified primes $13,17$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_4\wr C_2$ (as 16T42)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 - 15*x^14 - 9*x^13 + 67*x^12 + 28*x^11 + 318*x^10 - 337*x^9 - 1061*x^8 + 899*x^7 - 457*x^6 + 1394*x^5 - 683*x^4 - 197*x^3 + 80*x^2 - 33*x + 9)
 
Copy content gp:K = bnfinit(y^16 - 3*y^15 - 15*y^14 - 9*y^13 + 67*y^12 + 28*y^11 + 318*y^10 - 337*y^9 - 1061*y^8 + 899*y^7 - 457*y^6 + 1394*y^5 - 683*y^4 - 197*y^3 + 80*y^2 - 33*y + 9, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 3*x^15 - 15*x^14 - 9*x^13 + 67*x^12 + 28*x^11 + 318*x^10 - 337*x^9 - 1061*x^8 + 899*x^7 - 457*x^6 + 1394*x^5 - 683*x^4 - 197*x^3 + 80*x^2 - 33*x + 9);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 3*x^15 - 15*x^14 - 9*x^13 + 67*x^12 + 28*x^11 + 318*x^10 - 337*x^9 - 1061*x^8 + 899*x^7 - 457*x^6 + 1394*x^5 - 683*x^4 - 197*x^3 + 80*x^2 - 33*x + 9)
 

\( x^{16} - 3 x^{15} - 15 x^{14} - 9 x^{13} + 67 x^{12} + 28 x^{11} + 318 x^{10} - 337 x^{9} - 1061 x^{8} + \cdots + 9 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[8, 4]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(27466182620559501230159449\) \(\medspace = 13^{14}\cdot 17^{8}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(38.90\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $13^{7/8}17^{1/2}\approx 38.897787010151276$
Ramified primes:   \(13\), \(17\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2\times C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{4}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{5}$, $\frac{1}{9}a^{14}+\frac{1}{9}a^{13}-\frac{1}{9}a^{11}-\frac{1}{9}a^{9}-\frac{1}{9}a^{8}+\frac{2}{9}a^{7}-\frac{2}{9}a^{6}+\frac{4}{9}a^{5}-\frac{4}{9}a^{4}+\frac{1}{3}a^{3}-\frac{4}{9}a^{2}$, $\frac{1}{11\cdots 33}a^{15}+\frac{32\cdots 07}{10\cdots 03}a^{14}-\frac{24\cdots 59}{11\cdots 33}a^{13}+\frac{16\cdots 17}{11\cdots 33}a^{12}-\frac{73\cdots 35}{11\cdots 33}a^{11}-\frac{21\cdots 39}{11\cdots 33}a^{10}-\frac{29\cdots 92}{11\cdots 33}a^{9}+\frac{28\cdots 48}{19\cdots 53}a^{8}-\frac{13\cdots 69}{35\cdots 01}a^{7}+\frac{31\cdots 71}{11\cdots 33}a^{6}-\frac{54\cdots 22}{13\cdots 37}a^{5}+\frac{65\cdots 40}{11\cdots 33}a^{4}+\frac{29\cdots 17}{20\cdots 57}a^{3}+\frac{26\cdots 23}{11\cdots 33}a^{2}+\frac{32\cdots 83}{39\cdots 11}a-\frac{12\cdots 16}{13\cdots 37}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $11$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{28\cdots 37}{43\cdots 79}a^{15}-\frac{63\cdots 22}{35\cdots 01}a^{14}-\frac{40\cdots 90}{39\cdots 11}a^{13}-\frac{37\cdots 47}{43\cdots 79}a^{12}+\frac{15\cdots 81}{39\cdots 11}a^{11}+\frac{36\cdots 16}{13\cdots 37}a^{10}+\frac{84\cdots 94}{39\cdots 11}a^{9}-\frac{10\cdots 91}{64\cdots 51}a^{8}-\frac{25\cdots 99}{35\cdots 01}a^{7}+\frac{16\cdots 16}{39\cdots 11}a^{6}-\frac{77\cdots 48}{39\cdots 11}a^{5}+\frac{31\cdots 87}{39\cdots 11}a^{4}-\frac{18\cdots 57}{76\cdots 91}a^{3}-\frac{79\cdots 79}{39\cdots 11}a^{2}+\frac{59\cdots 36}{13\cdots 37}a+\frac{83\cdots 92}{43\cdots 79}$, $\frac{26\cdots 98}{11\cdots 33}a^{15}-\frac{51\cdots 32}{10\cdots 03}a^{14}-\frac{44\cdots 90}{11\cdots 33}a^{13}-\frac{65\cdots 06}{11\cdots 33}a^{12}+\frac{10\cdots 75}{11\cdots 33}a^{11}+\frac{14\cdots 27}{11\cdots 33}a^{10}+\frac{10\cdots 07}{11\cdots 33}a^{9}+\frac{11\cdots 86}{19\cdots 53}a^{8}-\frac{72\cdots 48}{35\cdots 01}a^{7}+\frac{23\cdots 84}{11\cdots 33}a^{6}-\frac{74\cdots 58}{39\cdots 11}a^{5}+\frac{20\cdots 69}{11\cdots 33}a^{4}-\frac{91\cdots 07}{20\cdots 57}a^{3}+\frac{18\cdots 09}{11\cdots 33}a^{2}+\frac{18\cdots 52}{39\cdots 11}a-\frac{34\cdots 62}{13\cdots 37}$, $\frac{55\cdots 39}{11\cdots 33}a^{15}-\frac{16\cdots 98}{10\cdots 03}a^{14}-\frac{89\cdots 85}{11\cdots 33}a^{13}-\frac{95\cdots 90}{11\cdots 33}a^{12}+\frac{56\cdots 89}{11\cdots 33}a^{11}+\frac{29\cdots 39}{11\cdots 33}a^{10}+\frac{11\cdots 62}{11\cdots 33}a^{9}-\frac{51\cdots 97}{19\cdots 53}a^{8}-\frac{86\cdots 24}{11\cdots 67}a^{7}+\frac{62\cdots 57}{11\cdots 33}a^{6}+\frac{29\cdots 66}{39\cdots 11}a^{5}+\frac{79\cdots 59}{11\cdots 33}a^{4}-\frac{21\cdots 37}{20\cdots 57}a^{3}+\frac{13\cdots 05}{11\cdots 33}a^{2}-\frac{34\cdots 33}{39\cdots 11}a-\frac{86\cdots 11}{13\cdots 37}$, $\frac{10\cdots 22}{39\cdots 11}a^{15}-\frac{31\cdots 10}{35\cdots 01}a^{14}-\frac{17\cdots 45}{43\cdots 79}a^{13}-\frac{48\cdots 06}{39\cdots 11}a^{12}+\frac{27\cdots 93}{13\cdots 37}a^{11}+\frac{26\cdots 00}{39\cdots 11}a^{10}+\frac{31\cdots 10}{39\cdots 11}a^{9}-\frac{77\cdots 54}{64\cdots 51}a^{8}-\frac{11\cdots 32}{35\cdots 01}a^{7}+\frac{11\cdots 78}{39\cdots 11}a^{6}-\frac{21\cdots 64}{39\cdots 11}a^{5}+\frac{18\cdots 85}{43\cdots 79}a^{4}-\frac{13\cdots 66}{69\cdots 19}a^{3}-\frac{52\cdots 63}{43\cdots 79}a^{2}-\frac{78\cdots 75}{13\cdots 37}a-\frac{55\cdots 48}{43\cdots 79}$, $\frac{11\cdots 84}{39\cdots 11}a^{15}-\frac{11\cdots 67}{11\cdots 67}a^{14}-\frac{16\cdots 15}{39\cdots 11}a^{13}-\frac{19\cdots 37}{39\cdots 11}a^{12}+\frac{93\cdots 41}{39\cdots 11}a^{11}+\frac{22\cdots 51}{39\cdots 11}a^{10}+\frac{10\cdots 08}{13\cdots 37}a^{9}-\frac{32\cdots 75}{21\cdots 17}a^{8}-\frac{12\cdots 19}{35\cdots 01}a^{7}+\frac{47\cdots 54}{13\cdots 37}a^{6}-\frac{14\cdots 65}{39\cdots 11}a^{5}+\frac{20\cdots 80}{39\cdots 11}a^{4}-\frac{15\cdots 70}{69\cdots 19}a^{3}-\frac{50\cdots 42}{39\cdots 11}a^{2}-\frac{40\cdots 33}{43\cdots 79}a-\frac{86\cdots 36}{43\cdots 79}$, $\frac{21164790259}{5663045130237}a^{15}+\frac{3564137023}{514822284567}a^{14}-\frac{566119371278}{5663045130237}a^{13}-\frac{1834440313489}{5663045130237}a^{12}-\frac{543658015726}{5663045130237}a^{11}+\frac{5652136786022}{5663045130237}a^{10}+\frac{11577580746034}{5663045130237}a^{9}+\frac{30240279273430}{5663045130237}a^{8}-\frac{329793847151}{57202476063}a^{7}-\frac{80874356709907}{5663045130237}a^{6}+\frac{8128484247547}{1887681710079}a^{5}-\frac{41658926721961}{5663045130237}a^{4}+\frac{87975668049044}{5663045130237}a^{3}-\frac{27802968150811}{5663045130237}a^{2}+\frac{2651437946587}{1887681710079}a+\frac{3514699948}{629227236693}$, $\frac{36\cdots 97}{11\cdots 33}a^{15}-\frac{86\cdots 23}{10\cdots 03}a^{14}-\frac{58\cdots 17}{11\cdots 33}a^{13}-\frac{52\cdots 19}{11\cdots 33}a^{12}+\frac{23\cdots 03}{11\cdots 33}a^{11}+\frac{19\cdots 98}{11\cdots 33}a^{10}+\frac{11\cdots 36}{11\cdots 33}a^{9}-\frac{12\cdots 92}{19\cdots 53}a^{8}-\frac{13\cdots 09}{35\cdots 01}a^{7}+\frac{18\cdots 71}{11\cdots 33}a^{6}-\frac{16\cdots 47}{13\cdots 37}a^{5}+\frac{42\cdots 46}{11\cdots 33}a^{4}-\frac{91\cdots 14}{20\cdots 57}a^{3}-\frac{19\cdots 00}{11\cdots 33}a^{2}+\frac{31\cdots 58}{39\cdots 11}a+\frac{97\cdots 62}{13\cdots 37}$, $\frac{38\cdots 15}{39\cdots 11}a^{15}-\frac{10\cdots 42}{35\cdots 01}a^{14}-\frac{56\cdots 22}{39\cdots 11}a^{13}-\frac{29\cdots 94}{39\cdots 11}a^{12}+\frac{25\cdots 22}{39\cdots 11}a^{11}+\frac{85\cdots 70}{39\cdots 11}a^{10}+\frac{12\cdots 99}{39\cdots 11}a^{9}-\frac{23\cdots 97}{64\cdots 51}a^{8}-\frac{11\cdots 28}{11\cdots 67}a^{7}+\frac{37\cdots 74}{39\cdots 11}a^{6}-\frac{26\cdots 94}{43\cdots 79}a^{5}+\frac{60\cdots 05}{39\cdots 11}a^{4}-\frac{51\cdots 20}{69\cdots 19}a^{3}-\frac{47\cdots 23}{39\cdots 11}a^{2}-\frac{49\cdots 69}{13\cdots 37}a-\frac{78\cdots 36}{43\cdots 79}$, $\frac{33\cdots 90}{39\cdots 11}a^{15}-\frac{30\cdots 97}{35\cdots 01}a^{14}-\frac{69\cdots 29}{39\cdots 11}a^{13}-\frac{13\cdots 97}{39\cdots 11}a^{12}+\frac{15\cdots 85}{39\cdots 11}a^{11}+\frac{49\cdots 79}{39\cdots 11}a^{10}+\frac{12\cdots 56}{39\cdots 11}a^{9}+\frac{17\cdots 91}{64\cdots 51}a^{8}-\frac{15\cdots 83}{11\cdots 67}a^{7}-\frac{35\cdots 02}{39\cdots 11}a^{6}+\frac{51\cdots 21}{43\cdots 79}a^{5}-\frac{25\cdots 30}{39\cdots 11}a^{4}+\frac{35\cdots 49}{69\cdots 19}a^{3}-\frac{14\cdots 98}{39\cdots 11}a^{2}+\frac{22\cdots 50}{43\cdots 79}a+\frac{58\cdots 65}{43\cdots 79}$, $\frac{15\cdots 78}{11\cdots 33}a^{15}-\frac{14\cdots 22}{10\cdots 03}a^{14}-\frac{28\cdots 16}{11\cdots 33}a^{13}-\frac{62\cdots 43}{11\cdots 33}a^{12}+\frac{15\cdots 58}{11\cdots 33}a^{11}+\frac{11\cdots 21}{11\cdots 33}a^{10}+\frac{57\cdots 13}{11\cdots 33}a^{9}+\frac{87\cdots 02}{19\cdots 53}a^{8}-\frac{39\cdots 01}{35\cdots 01}a^{7}-\frac{88\cdots 02}{11\cdots 33}a^{6}+\frac{54\cdots 94}{13\cdots 37}a^{5}+\frac{77\cdots 21}{11\cdots 33}a^{4}+\frac{15\cdots 92}{20\cdots 57}a^{3}-\frac{39\cdots 09}{11\cdots 33}a^{2}-\frac{49\cdots 32}{39\cdots 11}a+\frac{15\cdots 83}{13\cdots 37}$, $\frac{10\cdots 04}{11\cdots 33}a^{15}-\frac{24\cdots 22}{10\cdots 03}a^{14}-\frac{16\cdots 31}{11\cdots 33}a^{13}-\frac{15\cdots 71}{11\cdots 33}a^{12}+\frac{66\cdots 56}{11\cdots 33}a^{11}+\frac{55\cdots 82}{11\cdots 33}a^{10}+\frac{34\cdots 87}{11\cdots 33}a^{9}-\frac{37\cdots 34}{19\cdots 53}a^{8}-\frac{37\cdots 72}{35\cdots 01}a^{7}+\frac{51\cdots 37}{11\cdots 33}a^{6}-\frac{36\cdots 51}{39\cdots 11}a^{5}+\frac{13\cdots 80}{11\cdots 33}a^{4}-\frac{31\cdots 13}{20\cdots 57}a^{3}-\frac{46\cdots 25}{11\cdots 33}a^{2}-\frac{12\cdots 26}{39\cdots 11}a+\frac{13\cdots 30}{13\cdots 37}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 13224148.4074 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 13224148.4074 \cdot 1}{2\cdot\sqrt{27466182620559501230159449}}\cr\approx \mathstrut & 0.503382375460 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 - 15*x^14 - 9*x^13 + 67*x^12 + 28*x^11 + 318*x^10 - 337*x^9 - 1061*x^8 + 899*x^7 - 457*x^6 + 1394*x^5 - 683*x^4 - 197*x^3 + 80*x^2 - 33*x + 9) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 3*x^15 - 15*x^14 - 9*x^13 + 67*x^12 + 28*x^11 + 318*x^10 - 337*x^9 - 1061*x^8 + 899*x^7 - 457*x^6 + 1394*x^5 - 683*x^4 - 197*x^3 + 80*x^2 - 33*x + 9, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 3*x^15 - 15*x^14 - 9*x^13 + 67*x^12 + 28*x^11 + 318*x^10 - 337*x^9 - 1061*x^8 + 899*x^7 - 457*x^6 + 1394*x^5 - 683*x^4 - 197*x^3 + 80*x^2 - 33*x + 9); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 3*x^15 - 15*x^14 - 9*x^13 + 67*x^12 + 28*x^11 + 318*x^10 - 337*x^9 - 1061*x^8 + 899*x^7 - 457*x^6 + 1394*x^5 - 683*x^4 - 197*x^3 + 80*x^2 - 33*x + 9); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_4\wr C_2$ (as 16T42):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_4\wr C_2$
Character table for $C_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{13}) \), \(\Q(\sqrt{221}) \), \(\Q(\sqrt{17}) \), 4.4.37349.1 x2, 4.4.634933.1 x2, \(\Q(\sqrt{13}, \sqrt{17})\), 8.4.5240818888357.2, 8.4.5240818888357.1, 8.8.403139914489.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 8 siblings: 8.4.5240818888357.2, 8.4.5240818888357.1
Degree 16 sibling: 16.0.95038694188787201488441.2
Minimal sibling: 8.4.5240818888357.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.8.0.1}{8} }^{2}$ ${\href{/padicField/3.2.0.1}{2} }^{8}$ ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{4}$ ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ R R ${\href{/padicField/19.8.0.1}{8} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.2.0.1}{2} }^{8}$ ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ ${\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{8}$ ${\href{/padicField/47.8.0.1}{8} }^{2}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display 13.1.8.7a1.3$x^{8} + 52$$8$$1$$7$$C_8:C_2$$$[\ ]_{8}^{2}$$
13.1.8.7a1.3$x^{8} + 52$$8$$1$$7$$C_8:C_2$$$[\ ]_{8}^{2}$$
\(17\) Copy content Toggle raw display 17.4.2.4a1.2$x^{8} + 14 x^{6} + 20 x^{5} + 55 x^{4} + 140 x^{3} + 142 x^{2} + 60 x + 26$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$
17.4.2.4a1.2$x^{8} + 14 x^{6} + 20 x^{5} + 55 x^{4} + 140 x^{3} + 142 x^{2} + 60 x + 26$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)