Normalized defining polynomial
\( x^{16} - x^{15} + 6 x^{14} + 13 x^{13} + 60 x^{12} + 33 x^{11} + 31 x^{10} + 28 x^{9} + 330 x^{8} + \cdots + 27 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(95038694188787201488441\)
\(\medspace = 13^{14}\cdot 17^{6}\)
|
| |
| Root discriminant: | \(27.30\) |
| |
| Galois root discriminant: | $13^{7/8}17^{1/2}\approx 38.897787010151276$ | ||
| Ramified primes: |
\(13\), \(17\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 8.0.1394947801.1 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{3}$, $\frac{1}{9}a^{12}-\frac{1}{9}a^{9}-\frac{1}{9}a^{8}+\frac{2}{9}a^{7}-\frac{1}{9}a^{6}-\frac{1}{9}a^{5}-\frac{2}{9}a^{4}-\frac{1}{9}a^{3}-\frac{4}{9}a^{2}+\frac{1}{3}a$, $\frac{1}{9}a^{13}-\frac{1}{9}a^{10}-\frac{1}{9}a^{9}-\frac{1}{9}a^{8}-\frac{4}{9}a^{7}-\frac{4}{9}a^{6}+\frac{4}{9}a^{5}-\frac{4}{9}a^{4}+\frac{2}{9}a^{3}-\frac{1}{3}a$, $\frac{1}{567}a^{14}-\frac{11}{567}a^{13}-\frac{1}{63}a^{12}+\frac{92}{567}a^{11}-\frac{50}{567}a^{10}-\frac{5}{567}a^{9}-\frac{32}{567}a^{8}+\frac{31}{81}a^{7}-\frac{4}{21}a^{6}-\frac{5}{189}a^{5}-\frac{92}{567}a^{4}-\frac{22}{81}a^{3}+\frac{3}{7}a^{2}+\frac{23}{63}a-\frac{1}{21}$, $\frac{1}{3498453071379}a^{15}+\frac{1366803722}{3498453071379}a^{14}-\frac{95480202887}{3498453071379}a^{13}+\frac{31965109175}{3498453071379}a^{12}+\frac{25414905175}{166593003399}a^{11}+\frac{348345798095}{3498453071379}a^{10}+\frac{507339268805}{3498453071379}a^{9}+\frac{143339424749}{3498453071379}a^{8}-\frac{1357439084816}{3498453071379}a^{7}-\frac{301517250803}{1166151023793}a^{6}+\frac{283577465134}{3498453071379}a^{5}-\frac{188539524569}{388717007931}a^{4}+\frac{34184415326}{3498453071379}a^{3}+\frac{86584678972}{388717007931}a^{2}-\frac{3122586307}{9039930417}a+\frac{47647982864}{129572335977}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{19045343}{108623997}a^{15}-\frac{8922911}{36207999}a^{14}+\frac{118261462}{108623997}a^{13}+\frac{211635193}{108623997}a^{12}+\frac{1010221960}{108623997}a^{11}+\frac{5851319}{4023111}a^{10}+\frac{20536847}{12069333}a^{9}+\frac{171974197}{36207999}a^{8}+\frac{5991742762}{108623997}a^{7}+\frac{3603955781}{36207999}a^{6}+\frac{8993525309}{108623997}a^{5}+\frac{4218945995}{108623997}a^{4}+\frac{1960782725}{108623997}a^{3}+\frac{262148869}{12069333}a^{2}+\frac{187684088}{12069333}a+\frac{13677086}{4023111}$, $\frac{153101849393}{1166151023793}a^{15}-\frac{42271229960}{166593003399}a^{14}+\frac{1176953586629}{1166151023793}a^{13}+\frac{133678355947}{166593003399}a^{12}+\frac{2721046981558}{388717007931}a^{11}-\frac{2604350865962}{1166151023793}a^{10}+\frac{6305511318055}{1166151023793}a^{9}-\frac{774935747900}{1166151023793}a^{8}+\frac{50498891299253}{1166151023793}a^{7}+\frac{20347395141767}{388717007931}a^{6}+\frac{61370664968360}{1166151023793}a^{5}+\frac{9179491341268}{388717007931}a^{4}+\frac{18880098875485}{1166151023793}a^{3}+\frac{1690554462241}{129572335977}a^{2}+\frac{26938027495}{3013310139}a+\frac{145314814745}{43190778659}$, $\frac{249855513455}{3498453071379}a^{15}-\frac{725719789652}{3498453071379}a^{14}+\frac{2358717536855}{3498453071379}a^{13}-\frac{178107853307}{3498453071379}a^{12}+\frac{3785756276837}{1166151023793}a^{11}-\frac{2363108294594}{499779010197}a^{10}+\frac{1868507800954}{499779010197}a^{9}-\frac{5801285210429}{3498453071379}a^{8}+\frac{78400011749354}{3498453071379}a^{7}+\frac{1136050585733}{166593003399}a^{6}-\frac{7837975691440}{3498453071379}a^{5}-\frac{3621527403566}{388717007931}a^{4}+\frac{2128407704650}{3498453071379}a^{3}+\frac{121925887525}{55531001133}a^{2}-\frac{22253185652}{9039930417}a-\frac{241626796079}{129572335977}$, $\frac{116707953841}{3498453071379}a^{15}-\frac{36279762137}{499779010197}a^{14}+\frac{336678686851}{1166151023793}a^{13}+\frac{57920576816}{499779010197}a^{12}+\frac{6406298764189}{3498453071379}a^{11}-\frac{2855807991896}{3498453071379}a^{10}+\frac{8082203684602}{3498453071379}a^{9}-\frac{1621512258848}{3498453071379}a^{8}+\frac{12773075972101}{1166151023793}a^{7}+\frac{13091823612967}{1166151023793}a^{6}+\frac{49554537096784}{3498453071379}a^{5}+\frac{37840985389013}{3498453071379}a^{4}+\frac{8184537768545}{1166151023793}a^{3}+\frac{1768833231698}{388717007931}a^{2}+\frac{1024493453}{1004436713}a+\frac{57699063131}{43190778659}$, $\frac{354167086703}{3498453071379}a^{15}-\frac{527514423967}{3498453071379}a^{14}+\frac{225132148163}{388717007931}a^{13}+\frac{4325122647109}{3498453071379}a^{12}+\frac{16593743525915}{3498453071379}a^{11}+\frac{117598421339}{499779010197}a^{10}-\frac{838641132100}{499779010197}a^{9}+\frac{19747027141349}{3498453071379}a^{8}+\frac{3836704305926}{129572335977}a^{7}+\frac{8844562293806}{166593003399}a^{6}+\frac{95394964757867}{3498453071379}a^{5}+\frac{18233313432223}{3498453071379}a^{4}+\frac{4262381195930}{388717007931}a^{3}+\frac{422418847675}{55531001133}a^{2}+\frac{6386093243}{1004436713}a-\frac{87092604615}{43190778659}$, $\frac{30402889817}{3498453071379}a^{15}+\frac{23244859663}{3498453071379}a^{14}+\frac{90104484899}{3498453071379}a^{13}+\frac{729139550509}{3498453071379}a^{12}+\frac{29269865151}{43190778659}a^{11}+\frac{3424463180521}{3498453071379}a^{10}+\frac{427057830448}{3498453071379}a^{9}-\frac{15437376455}{499779010197}a^{8}+\frac{11534235225425}{3498453071379}a^{7}+\frac{11300120913212}{1166151023793}a^{6}+\frac{46757621304563}{3498453071379}a^{5}+\frac{1141201599872}{166593003399}a^{4}+\frac{10381200427306}{3498453071379}a^{3}+\frac{886359835660}{388717007931}a^{2}+\frac{18989675974}{9039930417}a+\frac{22359406744}{18510333711}$, $\frac{2218574759}{129572335977}a^{15}-\frac{106072769765}{3498453071379}a^{14}+\frac{494642740000}{3498453071379}a^{13}+\frac{29908364329}{388717007931}a^{12}+\frac{3801062637698}{3498453071379}a^{11}-\frac{735124058990}{3498453071379}a^{10}+\frac{4697761647682}{3498453071379}a^{9}-\frac{4240939752701}{3498453071379}a^{8}+\frac{22568003331775}{3498453071379}a^{7}+\frac{2587135074445}{388717007931}a^{6}+\frac{2151500401708}{166593003399}a^{5}+\frac{14375805850390}{3498453071379}a^{4}+\frac{4328650356230}{3498453071379}a^{3}-\frac{1973085949883}{388717007931}a^{2}-\frac{26793098602}{9039930417}a-\frac{219240063016}{129572335977}$
|
| |
| Regulator: | \( 408026.14455 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 408026.14455 \cdot 1}{2\cdot\sqrt{95038694188787201488441}}\cr\approx \mathstrut & 1.6074841988 \end{aligned}\] (assuming GRH)
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 4.4.37349.1, 4.0.2873.1, 8.0.1394947801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 8 siblings: | 8.4.5240818888357.2, 8.4.5240818888357.1 |
| Degree 16 sibling: | 16.8.27466182620559501230159449.1 |
| Minimal sibling: | 8.4.5240818888357.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.2.0.1}{2} }^{6}{,}\,{\href{/padicField/3.1.0.1}{1} }^{4}$ | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{8}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(13\)
| 13.2.8.14a1.4 | $x^{16} + 96 x^{15} + 4048 x^{14} + 98112 x^{13} + 1500016 x^{12} + 14910336 x^{11} + 95462080 x^{10} + 374159616 x^{9} + 799894624 x^{8} + 748319232 x^{7} + 381848320 x^{6} + 119282688 x^{5} + 24000256 x^{4} + 3139584 x^{3} + 259072 x^{2} + 12418 x + 282$ | $8$ | $2$ | $14$ | $C_8: C_2$ | $$[\ ]_{8}^{2}$$ |
|
\(17\)
| 17.4.1.0a1.1 | $x^{4} + 7 x^{2} + 10 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 17.2.2.2a1.1 | $x^{4} + 32 x^{3} + 262 x^{2} + 113 x + 9$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 17.4.2.4a1.2 | $x^{8} + 14 x^{6} + 20 x^{5} + 55 x^{4} + 140 x^{3} + 142 x^{2} + 60 x + 26$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |