Properties

Label 16.0.950...441.2
Degree $16$
Signature $[0, 8]$
Discriminant $9.504\times 10^{22}$
Root discriminant \(27.30\)
Ramified primes $13,17$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_4\wr C_2$ (as 16T28)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + 6*x^14 + 13*x^13 + 60*x^12 + 33*x^11 + 31*x^10 + 28*x^9 + 330*x^8 + 704*x^7 + 811*x^6 + 579*x^5 + 307*x^4 + 208*x^3 + 162*x^2 + 90*x + 27)
 
Copy content gp:K = bnfinit(y^16 - y^15 + 6*y^14 + 13*y^13 + 60*y^12 + 33*y^11 + 31*y^10 + 28*y^9 + 330*y^8 + 704*y^7 + 811*y^6 + 579*y^5 + 307*y^4 + 208*y^3 + 162*y^2 + 90*y + 27, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - x^15 + 6*x^14 + 13*x^13 + 60*x^12 + 33*x^11 + 31*x^10 + 28*x^9 + 330*x^8 + 704*x^7 + 811*x^6 + 579*x^5 + 307*x^4 + 208*x^3 + 162*x^2 + 90*x + 27);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - x^15 + 6*x^14 + 13*x^13 + 60*x^12 + 33*x^11 + 31*x^10 + 28*x^9 + 330*x^8 + 704*x^7 + 811*x^6 + 579*x^5 + 307*x^4 + 208*x^3 + 162*x^2 + 90*x + 27)
 

\( x^{16} - x^{15} + 6 x^{14} + 13 x^{13} + 60 x^{12} + 33 x^{11} + 31 x^{10} + 28 x^{9} + 330 x^{8} + \cdots + 27 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(95038694188787201488441\) \(\medspace = 13^{14}\cdot 17^{6}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(27.30\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $13^{7/8}17^{1/2}\approx 38.897787010151276$
Ramified primes:   \(13\), \(17\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  8.0.1394947801.1

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{3}$, $\frac{1}{9}a^{12}-\frac{1}{9}a^{9}-\frac{1}{9}a^{8}+\frac{2}{9}a^{7}-\frac{1}{9}a^{6}-\frac{1}{9}a^{5}-\frac{2}{9}a^{4}-\frac{1}{9}a^{3}-\frac{4}{9}a^{2}+\frac{1}{3}a$, $\frac{1}{9}a^{13}-\frac{1}{9}a^{10}-\frac{1}{9}a^{9}-\frac{1}{9}a^{8}-\frac{4}{9}a^{7}-\frac{4}{9}a^{6}+\frac{4}{9}a^{5}-\frac{4}{9}a^{4}+\frac{2}{9}a^{3}-\frac{1}{3}a$, $\frac{1}{567}a^{14}-\frac{11}{567}a^{13}-\frac{1}{63}a^{12}+\frac{92}{567}a^{11}-\frac{50}{567}a^{10}-\frac{5}{567}a^{9}-\frac{32}{567}a^{8}+\frac{31}{81}a^{7}-\frac{4}{21}a^{6}-\frac{5}{189}a^{5}-\frac{92}{567}a^{4}-\frac{22}{81}a^{3}+\frac{3}{7}a^{2}+\frac{23}{63}a-\frac{1}{21}$, $\frac{1}{3498453071379}a^{15}+\frac{1366803722}{3498453071379}a^{14}-\frac{95480202887}{3498453071379}a^{13}+\frac{31965109175}{3498453071379}a^{12}+\frac{25414905175}{166593003399}a^{11}+\frac{348345798095}{3498453071379}a^{10}+\frac{507339268805}{3498453071379}a^{9}+\frac{143339424749}{3498453071379}a^{8}-\frac{1357439084816}{3498453071379}a^{7}-\frac{301517250803}{1166151023793}a^{6}+\frac{283577465134}{3498453071379}a^{5}-\frac{188539524569}{388717007931}a^{4}+\frac{34184415326}{3498453071379}a^{3}+\frac{86584678972}{388717007931}a^{2}-\frac{3122586307}{9039930417}a+\frac{47647982864}{129572335977}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $7$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{19045343}{108623997}a^{15}-\frac{8922911}{36207999}a^{14}+\frac{118261462}{108623997}a^{13}+\frac{211635193}{108623997}a^{12}+\frac{1010221960}{108623997}a^{11}+\frac{5851319}{4023111}a^{10}+\frac{20536847}{12069333}a^{9}+\frac{171974197}{36207999}a^{8}+\frac{5991742762}{108623997}a^{7}+\frac{3603955781}{36207999}a^{6}+\frac{8993525309}{108623997}a^{5}+\frac{4218945995}{108623997}a^{4}+\frac{1960782725}{108623997}a^{3}+\frac{262148869}{12069333}a^{2}+\frac{187684088}{12069333}a+\frac{13677086}{4023111}$, $\frac{153101849393}{1166151023793}a^{15}-\frac{42271229960}{166593003399}a^{14}+\frac{1176953586629}{1166151023793}a^{13}+\frac{133678355947}{166593003399}a^{12}+\frac{2721046981558}{388717007931}a^{11}-\frac{2604350865962}{1166151023793}a^{10}+\frac{6305511318055}{1166151023793}a^{9}-\frac{774935747900}{1166151023793}a^{8}+\frac{50498891299253}{1166151023793}a^{7}+\frac{20347395141767}{388717007931}a^{6}+\frac{61370664968360}{1166151023793}a^{5}+\frac{9179491341268}{388717007931}a^{4}+\frac{18880098875485}{1166151023793}a^{3}+\frac{1690554462241}{129572335977}a^{2}+\frac{26938027495}{3013310139}a+\frac{145314814745}{43190778659}$, $\frac{249855513455}{3498453071379}a^{15}-\frac{725719789652}{3498453071379}a^{14}+\frac{2358717536855}{3498453071379}a^{13}-\frac{178107853307}{3498453071379}a^{12}+\frac{3785756276837}{1166151023793}a^{11}-\frac{2363108294594}{499779010197}a^{10}+\frac{1868507800954}{499779010197}a^{9}-\frac{5801285210429}{3498453071379}a^{8}+\frac{78400011749354}{3498453071379}a^{7}+\frac{1136050585733}{166593003399}a^{6}-\frac{7837975691440}{3498453071379}a^{5}-\frac{3621527403566}{388717007931}a^{4}+\frac{2128407704650}{3498453071379}a^{3}+\frac{121925887525}{55531001133}a^{2}-\frac{22253185652}{9039930417}a-\frac{241626796079}{129572335977}$, $\frac{116707953841}{3498453071379}a^{15}-\frac{36279762137}{499779010197}a^{14}+\frac{336678686851}{1166151023793}a^{13}+\frac{57920576816}{499779010197}a^{12}+\frac{6406298764189}{3498453071379}a^{11}-\frac{2855807991896}{3498453071379}a^{10}+\frac{8082203684602}{3498453071379}a^{9}-\frac{1621512258848}{3498453071379}a^{8}+\frac{12773075972101}{1166151023793}a^{7}+\frac{13091823612967}{1166151023793}a^{6}+\frac{49554537096784}{3498453071379}a^{5}+\frac{37840985389013}{3498453071379}a^{4}+\frac{8184537768545}{1166151023793}a^{3}+\frac{1768833231698}{388717007931}a^{2}+\frac{1024493453}{1004436713}a+\frac{57699063131}{43190778659}$, $\frac{354167086703}{3498453071379}a^{15}-\frac{527514423967}{3498453071379}a^{14}+\frac{225132148163}{388717007931}a^{13}+\frac{4325122647109}{3498453071379}a^{12}+\frac{16593743525915}{3498453071379}a^{11}+\frac{117598421339}{499779010197}a^{10}-\frac{838641132100}{499779010197}a^{9}+\frac{19747027141349}{3498453071379}a^{8}+\frac{3836704305926}{129572335977}a^{7}+\frac{8844562293806}{166593003399}a^{6}+\frac{95394964757867}{3498453071379}a^{5}+\frac{18233313432223}{3498453071379}a^{4}+\frac{4262381195930}{388717007931}a^{3}+\frac{422418847675}{55531001133}a^{2}+\frac{6386093243}{1004436713}a-\frac{87092604615}{43190778659}$, $\frac{30402889817}{3498453071379}a^{15}+\frac{23244859663}{3498453071379}a^{14}+\frac{90104484899}{3498453071379}a^{13}+\frac{729139550509}{3498453071379}a^{12}+\frac{29269865151}{43190778659}a^{11}+\frac{3424463180521}{3498453071379}a^{10}+\frac{427057830448}{3498453071379}a^{9}-\frac{15437376455}{499779010197}a^{8}+\frac{11534235225425}{3498453071379}a^{7}+\frac{11300120913212}{1166151023793}a^{6}+\frac{46757621304563}{3498453071379}a^{5}+\frac{1141201599872}{166593003399}a^{4}+\frac{10381200427306}{3498453071379}a^{3}+\frac{886359835660}{388717007931}a^{2}+\frac{18989675974}{9039930417}a+\frac{22359406744}{18510333711}$, $\frac{2218574759}{129572335977}a^{15}-\frac{106072769765}{3498453071379}a^{14}+\frac{494642740000}{3498453071379}a^{13}+\frac{29908364329}{388717007931}a^{12}+\frac{3801062637698}{3498453071379}a^{11}-\frac{735124058990}{3498453071379}a^{10}+\frac{4697761647682}{3498453071379}a^{9}-\frac{4240939752701}{3498453071379}a^{8}+\frac{22568003331775}{3498453071379}a^{7}+\frac{2587135074445}{388717007931}a^{6}+\frac{2151500401708}{166593003399}a^{5}+\frac{14375805850390}{3498453071379}a^{4}+\frac{4328650356230}{3498453071379}a^{3}-\frac{1973085949883}{388717007931}a^{2}-\frac{26793098602}{9039930417}a-\frac{219240063016}{129572335977}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 408026.14455 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 408026.14455 \cdot 1}{2\cdot\sqrt{95038694188787201488441}}\cr\approx \mathstrut & 1.6074841988 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + 6*x^14 + 13*x^13 + 60*x^12 + 33*x^11 + 31*x^10 + 28*x^9 + 330*x^8 + 704*x^7 + 811*x^6 + 579*x^5 + 307*x^4 + 208*x^3 + 162*x^2 + 90*x + 27) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - x^15 + 6*x^14 + 13*x^13 + 60*x^12 + 33*x^11 + 31*x^10 + 28*x^9 + 330*x^8 + 704*x^7 + 811*x^6 + 579*x^5 + 307*x^4 + 208*x^3 + 162*x^2 + 90*x + 27, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - x^15 + 6*x^14 + 13*x^13 + 60*x^12 + 33*x^11 + 31*x^10 + 28*x^9 + 330*x^8 + 704*x^7 + 811*x^6 + 579*x^5 + 307*x^4 + 208*x^3 + 162*x^2 + 90*x + 27); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - x^15 + 6*x^14 + 13*x^13 + 60*x^12 + 33*x^11 + 31*x^10 + 28*x^9 + 330*x^8 + 704*x^7 + 811*x^6 + 579*x^5 + 307*x^4 + 208*x^3 + 162*x^2 + 90*x + 27); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_4\wr C_2$ (as 16T28):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_4\wr C_2$
Character table for $C_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{13}) \), 4.0.2197.1, 4.4.37349.1, 4.0.2873.1, 8.0.1394947801.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 8 siblings: 8.4.5240818888357.2, 8.4.5240818888357.1
Degree 16 sibling: 16.8.27466182620559501230159449.1
Minimal sibling: 8.4.5240818888357.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.8.0.1}{8} }^{2}$ ${\href{/padicField/3.2.0.1}{2} }^{6}{,}\,{\href{/padicField/3.1.0.1}{1} }^{4}$ ${\href{/padicField/5.4.0.1}{4} }^{4}$ ${\href{/padicField/7.4.0.1}{4} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ R R ${\href{/padicField/19.8.0.1}{8} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.2.0.1}{2} }^{6}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ ${\href{/padicField/31.4.0.1}{4} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{4}$ ${\href{/padicField/43.2.0.1}{2} }^{8}$ ${\href{/padicField/47.8.0.1}{8} }^{2}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display 13.2.8.14a1.4$x^{16} + 96 x^{15} + 4048 x^{14} + 98112 x^{13} + 1500016 x^{12} + 14910336 x^{11} + 95462080 x^{10} + 374159616 x^{9} + 799894624 x^{8} + 748319232 x^{7} + 381848320 x^{6} + 119282688 x^{5} + 24000256 x^{4} + 3139584 x^{3} + 259072 x^{2} + 12418 x + 282$$8$$2$$14$$C_8: C_2$$$[\ ]_{8}^{2}$$
\(17\) Copy content Toggle raw display 17.4.1.0a1.1$x^{4} + 7 x^{2} + 10 x + 3$$1$$4$$0$$C_4$$$[\ ]^{4}$$
17.2.2.2a1.1$x^{4} + 32 x^{3} + 262 x^{2} + 113 x + 9$$2$$2$$2$$C_4$$$[\ ]_{2}^{2}$$
17.4.2.4a1.2$x^{8} + 14 x^{6} + 20 x^{5} + 55 x^{4} + 140 x^{3} + 142 x^{2} + 60 x + 26$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)