Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $42$ | |
| Group : | $C_4\wr C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,3,5,15)(2,4,6,16)(7,8)(9,10)(11,12)(13,14), (1,10)(2,9)(3,12)(4,11)(5,14)(6,13)(7,16)(8,15) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$, $C_4\wr C_2$ x 2
Low degree siblings
8T17 x 2, 16T28, 32T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 7,11)( 8,12)( 9,13)(10,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9,11,13)( 8,10,12,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7,13,11, 9)( 8,14,12,10)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 3, 5,15)( 2, 4, 6,16)( 7,12)( 8,11)( 9,14)(10,13)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 5,16)( 2, 3, 6,15)( 7,10,11,14)( 8, 9,12,13)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 4, 5,16)( 2, 3, 6,15)( 7,14,11,10)( 8,13,12, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 5)( 2, 6)( 3,15)( 4,16)( 7,11)( 8,12)( 9,13)(10,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 6)( 2, 5)( 3,16)( 4,15)( 7,13,11, 9)( 8,14,12,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 5,11)( 2, 8, 6,12)( 3, 9,15,13)( 4,10,16,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 8, 4, 9, 5,12,16,13)( 2, 7, 3,10, 6,11,15,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 8,16,13, 5,12, 4, 9)( 2, 7,15,14, 6,11, 3,10)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,16, 5, 4)( 2,15, 6, 3)( 7,14,11,10)( 8,13,12, 9)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 11] |
| Character table: |
2 5 4 4 4 4 5 4 5 4 3 3 3 3 5
1a 2a 4a 4b 4c 4d 4e 2b 4f 2c 4g 8a 8b 4h
2P 1a 1a 2a 2a 2a 2b 2b 1a 2a 1a 2b 4d 4h 2b
3P 1a 2a 4b 4a 4f 4h 4e 2b 4c 2c 4g 8b 8a 4d
5P 1a 2a 4a 4b 4c 4d 4e 2b 4f 2c 4g 8a 8b 4h
7P 1a 2a 4b 4a 4f 4h 4e 2b 4c 2c 4g 8b 8a 4d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 1
X.3 1 1 -1 -1 -1 1 1 1 -1 1 1 -1 -1 1
X.4 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 1
X.5 1 -1 A -A -A -1 1 1 A -1 1 -A A -1
X.6 1 -1 -A A A -1 1 1 -A -1 1 A -A -1
X.7 1 -1 A -A -A -1 1 1 A 1 -1 A -A -1
X.8 1 -1 -A A A -1 1 1 -A 1 -1 -A A -1
X.9 2 2 . . . -2 -2 2 . . . . . -2
X.10 2 -2 . . . 2 -2 2 . . . . . 2
X.11 2 . B /B -/B C . -2 -B . . . . -C
X.12 2 . /B B -B -C . -2 -/B . . . . C
X.13 2 . -/B -B B -C . -2 /B . . . . C
X.14 2 . -B -/B /B C . -2 B . . . . -C
A = -E(4)
= -Sqrt(-1) = -i
B = -1-E(4)
= -1-Sqrt(-1) = -1-i
C = 2*E(4)
= 2*Sqrt(-1) = 2i
|