Normalized defining polynomial
\( x^{16} - 6 x^{15} + 2 x^{14} + 56 x^{13} - 144 x^{12} + 98 x^{11} + 39 x^{10} + 113 x^{9} - 451 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[8, 4]$ |
| |
Discriminant: |
\(233048894891904400000000\)
\(\medspace = 2^{10}\cdot 5^{8}\cdot 17^{12}\)
|
| |
Root discriminant: | \(28.87\) |
| |
Galois root discriminant: | $2^{2}5^{1/2}17^{3/4}\approx 74.88273266140878$ | ||
Ramified primes: |
\(2\), \(5\), \(17\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_4$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{13}+\frac{1}{4}a^{11}+\frac{1}{4}a^{10}-\frac{1}{2}a^{9}-\frac{1}{4}a^{7}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{3212390396}a^{15}-\frac{59823005}{3212390396}a^{14}-\frac{15196942}{803097599}a^{13}-\frac{456853211}{3212390396}a^{12}-\frac{852823611}{3212390396}a^{11}-\frac{537543303}{1606195198}a^{10}+\frac{160136945}{803097599}a^{9}-\frac{474170717}{3212390396}a^{8}+\frac{309537040}{803097599}a^{7}-\frac{411393531}{3212390396}a^{6}+\frac{290135377}{1606195198}a^{5}+\frac{302066796}{803097599}a^{4}-\frac{397318230}{803097599}a^{3}+\frac{23078665}{1606195198}a^{2}+\frac{1293866637}{3212390396}a-\frac{165216425}{803097599}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{51626212}{803097599}a^{15}-\frac{447719913}{803097599}a^{14}+\frac{606202311}{803097599}a^{13}+\frac{4067964176}{803097599}a^{12}-\frac{13567074307}{803097599}a^{11}+\frac{9076030402}{803097599}a^{10}+\frac{10858171829}{803097599}a^{9}+\frac{3990617268}{803097599}a^{8}-\frac{46998539481}{803097599}a^{7}+\frac{29456319428}{803097599}a^{6}+\frac{22279041863}{803097599}a^{5}-\frac{24847144085}{803097599}a^{4}+\frac{5072113959}{803097599}a^{3}+\frac{1804206729}{803097599}a^{2}-\frac{2296155414}{803097599}a+\frac{960393402}{803097599}$, $\frac{66054379}{803097599}a^{15}-\frac{381898107}{803097599}a^{14}+\frac{197930564}{803097599}a^{13}+\frac{3290773477}{803097599}a^{12}-\frac{10289021275}{803097599}a^{11}+\frac{9751382174}{803097599}a^{10}+\frac{3251472553}{803097599}a^{9}-\frac{142554449}{803097599}a^{8}-\frac{33923696646}{803097599}a^{7}+\frac{37118636791}{803097599}a^{6}+\frac{10898981934}{803097599}a^{5}-\frac{25449642656}{803097599}a^{4}+\frac{6399265603}{803097599}a^{3}+\frac{1195042886}{803097599}a^{2}-\frac{1732088286}{803097599}a+\frac{91241424}{803097599}$, $\frac{137962641}{803097599}a^{15}-\frac{502949887}{803097599}a^{14}-\frac{1176896304}{803097599}a^{13}+\frac{6132899779}{803097599}a^{12}-\frac{4016661626}{803097599}a^{11}-\frac{8844749561}{803097599}a^{10}+\frac{1843144688}{803097599}a^{9}+\frac{23715117869}{803097599}a^{8}-\frac{10664378260}{803097599}a^{7}-\frac{19749357475}{803097599}a^{6}+\frac{13850760929}{803097599}a^{5}+\frac{400264513}{803097599}a^{4}-\frac{1907459153}{803097599}a^{3}+\frac{1418509810}{803097599}a^{2}-\frac{702262342}{803097599}a+\frac{51626212}{803097599}$, $\frac{433463602}{803097599}a^{15}-\frac{2138878454}{803097599}a^{14}-\frac{1195988302}{803097599}a^{13}+\frac{21945845767}{803097599}a^{12}-\frac{39660174274}{803097599}a^{11}+\frac{10952749526}{803097599}a^{10}+\frac{9333158971}{803097599}a^{9}+\frac{65069086957}{803097599}a^{8}-\frac{124158363494}{803097599}a^{7}+\frac{58023579873}{803097599}a^{6}+\frac{24760311800}{803097599}a^{5}-\frac{34990266304}{803097599}a^{4}+\frac{13724015763}{803097599}a^{3}-\frac{2186821197}{803097599}a^{2}+\frac{509539975}{803097599}a-\frac{218028409}{803097599}$, $\frac{418836388}{803097599}a^{15}-\frac{5089346395}{1606195198}a^{14}+\frac{972909205}{803097599}a^{13}+\frac{47289080825}{1606195198}a^{12}-\frac{61773869194}{803097599}a^{11}+\frac{42581834255}{803097599}a^{10}+\frac{16797612228}{803097599}a^{9}+\frac{49747495720}{803097599}a^{8}-\frac{393936370897}{1606195198}a^{7}+\frac{309540159401}{1606195198}a^{6}+\frac{43253965779}{1606195198}a^{5}-\frac{80090727192}{803097599}a^{4}+\frac{78326589651}{1606195198}a^{3}-\frac{10466256999}{1606195198}a^{2}-\frac{4595169970}{803097599}a+\frac{614883264}{803097599}$, $\frac{66253426}{803097599}a^{15}-\frac{83850339}{1606195198}a^{14}-\frac{1562695196}{803097599}a^{13}+\frac{4738539061}{1606195198}a^{12}+\frac{8546620613}{803097599}a^{11}-\frac{22553054327}{803097599}a^{10}+\frac{3393718572}{803097599}a^{9}+\frac{19312208505}{803097599}a^{8}+\frac{51622564947}{1606195198}a^{7}-\frac{134580360799}{1606195198}a^{6}+\frac{50824741547}{1606195198}a^{5}+\frac{20253316803}{803097599}a^{4}-\frac{40734330207}{1606195198}a^{3}+\frac{9701028063}{1606195198}a^{2}+\frac{2005456932}{803097599}a-\frac{1478713469}{803097599}$, $\frac{150660907}{3212390396}a^{15}+\frac{1085534883}{3212390396}a^{14}-\frac{4796004267}{1606195198}a^{13}+\frac{2290852073}{3212390396}a^{12}+\frac{83274500025}{3212390396}a^{11}-\frac{81958925107}{1606195198}a^{10}+\frac{4408398760}{803097599}a^{9}+\frac{103675938845}{3212390396}a^{8}+\frac{128699182941}{1606195198}a^{7}-\frac{522532382089}{3212390396}a^{6}+\frac{68698407377}{1606195198}a^{5}+\frac{96751776733}{1606195198}a^{4}-\frac{66221683537}{1606195198}a^{3}+\frac{12634865091}{1606195198}a^{2}+\frac{16654470393}{3212390396}a-\frac{1329931233}{803097599}$, $\frac{2334778411}{1606195198}a^{15}-\frac{22989544509}{3212390396}a^{14}-\frac{12864166057}{3212390396}a^{13}+\frac{58728366121}{803097599}a^{12}-\frac{425521513077}{3212390396}a^{11}+\frac{127638634351}{3212390396}a^{10}+\frac{38989007663}{1606195198}a^{9}+\frac{351718458449}{1606195198}a^{8}-\frac{1321406755469}{3212390396}a^{7}+\frac{329953218379}{1606195198}a^{6}+\frac{194340634307}{3212390396}a^{5}-\frac{88727277766}{803097599}a^{4}+\frac{79529132081}{1606195198}a^{3}-\frac{6813874406}{803097599}a^{2}-\frac{1596120845}{1606195198}a-\frac{1230353237}{3212390396}$, $\frac{2103258549}{3212390396}a^{15}-\frac{2397369639}{803097599}a^{14}-\frac{10674669291}{3212390396}a^{13}+\frac{108220625221}{3212390396}a^{12}-\frac{36537163971}{803097599}a^{11}-\frac{62340864465}{3212390396}a^{10}+\frac{56834710097}{1606195198}a^{9}+\frac{350404971143}{3212390396}a^{8}-\frac{479768183281}{3212390396}a^{7}-\frac{87997507973}{3212390396}a^{6}+\frac{355903003145}{3212390396}a^{5}-\frac{34336215549}{803097599}a^{4}-\frac{8651146757}{803097599}a^{3}+\frac{14869168859}{803097599}a^{2}-\frac{17652575043}{3212390396}a-\frac{4224792075}{3212390396}$, $\frac{40240256}{803097599}a^{15}+\frac{48089210}{803097599}a^{14}-\frac{1327172057}{803097599}a^{13}+\frac{2569091909}{1606195198}a^{12}+\frac{8918734130}{803097599}a^{11}-\frac{41080117863}{1606195198}a^{10}+\frac{5326874358}{803097599}a^{9}+\frac{8675465493}{803097599}a^{8}+\frac{30995455955}{803097599}a^{7}-\frac{59552106073}{803097599}a^{6}+\frac{56018510829}{1606195198}a^{5}-\frac{2096012573}{1606195198}a^{4}-\frac{17056325017}{1606195198}a^{3}+\frac{9969315641}{803097599}a^{2}-\frac{7566709685}{1606195198}a-\frac{1765555079}{1606195198}$, $\frac{655572915}{803097599}a^{15}-\frac{6645211627}{1606195198}a^{14}-\frac{1520841902}{803097599}a^{13}+\frac{33877392145}{803097599}a^{12}-\frac{63143038114}{803097599}a^{11}+\frac{39456168945}{1606195198}a^{10}+\frac{14712501300}{803097599}a^{9}+\frac{98254216101}{803097599}a^{8}-\frac{383616566239}{1606195198}a^{7}+\frac{193408978099}{1606195198}a^{6}+\frac{29621291629}{803097599}a^{5}-\frac{130434448639}{1606195198}a^{4}+\frac{35404301273}{803097599}a^{3}-\frac{11724578729}{1606195198}a^{2}-\frac{2587825615}{1606195198}a+\frac{1862944505}{1606195198}$
|
| |
Regulator: | \( 628294.842196 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 628294.842196 \cdot 1}{2\cdot\sqrt{233048894891904400000000}}\cr\approx \mathstrut & 0.259638692642 \end{aligned}\] (assuming GRH)
Galois group
$(C_2^3\times C_4):C_4$ (as 16T292):
A solvable group of order 128 |
The 26 conjugacy class representatives for $(C_2^3\times C_4):C_4$ |
Character table for $(C_2^3\times C_4):C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{85}) \), 4.4.4913.1, 4.4.122825.1, \(\Q(\sqrt{5}, \sqrt{17})\), 8.8.15085980625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.0.23864206836931010560000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.2.4a1.2 | $x^{4} + 2 x^{3} + 5 x^{2} + 8 x + 5$ | $2$ | $2$ | $4$ | $C_4$ | $$[2]^{2}$$ |
2.2.2.6a1.2 | $x^{4} + 2 x^{3} + 3 x^{2} + 10 x + 3$ | $2$ | $2$ | $6$ | $C_4$ | $$[3]^{2}$$ | |
2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
\(5\)
| 5.8.2.8a1.2 | $x^{16} + 2 x^{12} + 6 x^{10} + 8 x^{9} + 5 x^{8} + 6 x^{6} + 8 x^{5} + 13 x^{4} + 24 x^{3} + 28 x^{2} + 16 x + 9$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $$[\ ]_{2}^{8}$$ |
\(17\)
| 17.4.4.12a1.4 | $x^{16} + 28 x^{14} + 40 x^{13} + 306 x^{12} + 840 x^{11} + 2224 x^{10} + 6240 x^{9} + 12619 x^{8} + 22760 x^{7} + 37872 x^{6} + 46720 x^{5} + 37954 x^{4} + 19560 x^{3} + 6156 x^{2} + 1080 x + 98$ | $4$ | $4$ | $12$ | $C_4^2$ | $$[\ ]_{4}^{4}$$ |