Normalized defining polynomial
\( x^{16} - 72x^{12} + 216x^{10} + 198x^{8} - 1296x^{6} + 1512x^{4} - 648x^{2} + 81 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[12, 2]$ |
| |
Discriminant: |
\(2450839029319069455089664\)
\(\medspace = 2^{62}\cdot 3^{12}\)
|
| |
Root discriminant: | \(33.45\) |
| |
Galois root discriminant: | $2^{137/32}3^{3/4}\approx 44.32263892833827$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_4$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}$, $\frac{1}{3}a^{5}$, $\frac{1}{6}a^{6}-\frac{1}{6}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{6}a^{7}-\frac{1}{6}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{18}a^{8}-\frac{1}{2}$, $\frac{1}{18}a^{9}-\frac{1}{2}a$, $\frac{1}{18}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{36}a^{11}-\frac{1}{36}a^{10}-\frac{1}{36}a^{9}-\frac{1}{36}a^{8}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{108}a^{12}-\frac{1}{36}a^{8}-\frac{1}{12}a^{4}+\frac{1}{4}$, $\frac{1}{108}a^{13}-\frac{1}{36}a^{9}-\frac{1}{12}a^{5}+\frac{1}{4}a$, $\frac{1}{756}a^{14}-\frac{1}{252}a^{12}-\frac{1}{36}a^{10}-\frac{5}{252}a^{8}-\frac{1}{84}a^{6}-\frac{1}{84}a^{4}-\frac{13}{28}a^{2}+\frac{1}{28}$, $\frac{1}{756}a^{15}-\frac{1}{252}a^{13}-\frac{1}{36}a^{10}+\frac{1}{126}a^{9}-\frac{1}{36}a^{8}-\frac{1}{84}a^{7}-\frac{1}{84}a^{5}+\frac{2}{7}a^{3}+\frac{1}{4}a^{2}-\frac{3}{14}a+\frac{1}{4}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $13$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{131}{378}a^{14}-\frac{187}{756}a^{12}+\frac{223}{9}a^{10}-\frac{14405}{252}a^{8}-\frac{4601}{42}a^{6}+\frac{31139}{84}a^{4}-\frac{1805}{7}a^{2}+\frac{1145}{28}$, $\frac{127}{378}a^{14}+\frac{197}{756}a^{12}-24a^{10}+\frac{13591}{252}a^{8}+\frac{764}{7}a^{6}-\frac{9845}{28}a^{4}+\frac{3235}{14}a^{2}-\frac{901}{28}$, $\frac{61}{756}a^{14}+\frac{55}{756}a^{12}-\frac{23}{4}a^{10}+\frac{3083}{252}a^{8}+\frac{2305}{84}a^{6}-\frac{2251}{28}a^{4}+\frac{1307}{28}a^{2}-\frac{149}{28}$, $\frac{491}{756}a^{14}+\frac{191}{378}a^{12}-\frac{1669}{36}a^{10}+\frac{13133}{126}a^{8}+\frac{17569}{84}a^{6}-\frac{28487}{42}a^{4}+\frac{12811}{28}a^{2}-\frac{969}{14}$, $\frac{193}{756}a^{14}+\frac{71}{378}a^{12}-\frac{73}{4}a^{10}+\frac{2627}{63}a^{8}+\frac{6863}{84}a^{6}-\frac{3797}{14}a^{4}+\frac{5163}{28}a^{2}-\frac{195}{7}$, $\frac{2}{189}a^{14}+\frac{5}{378}a^{12}+\frac{7}{9}a^{10}-\frac{407}{126}a^{8}-\frac{17}{42}a^{6}+\frac{401}{21}a^{4}-\frac{375}{14}a^{2}+\frac{68}{7}$, $\frac{193}{189}a^{14}+\frac{589}{756}a^{12}-\frac{1313}{18}a^{10}+\frac{41549}{252}a^{8}+\frac{13817}{42}a^{6}-\frac{90127}{84}a^{4}+\frac{5037}{7}a^{2}-\frac{2987}{28}$, $\frac{571}{378}a^{15}+\frac{11}{18}a^{14}+\frac{443}{378}a^{13}+\frac{1}{2}a^{12}-\frac{3883}{36}a^{11}-\frac{523}{12}a^{10}+\frac{61133}{252}a^{9}+\frac{3469}{36}a^{8}+\frac{10246}{21}a^{7}+\frac{598}{3}a^{6}-\frac{33182}{21}a^{5}-\frac{1886}{3}a^{4}+\frac{29527}{28}a^{3}+\frac{1651}{4}a^{2}-\frac{4339}{28}a-\frac{243}{4}$, $\frac{28}{27}a^{15}+\frac{41}{189}a^{14}+\frac{83}{108}a^{13}+\frac{23}{126}a^{12}-\frac{889}{12}a^{11}-\frac{557}{36}a^{10}+\frac{1522}{9}a^{9}+\frac{8525}{252}a^{8}+\frac{989}{3}a^{7}+\frac{3019}{42}a^{6}-\frac{13171}{12}a^{5}-\frac{4654}{21}a^{4}+\frac{3039}{4}a^{3}+\frac{3909}{28}a^{2}-123a-\frac{459}{28}$, $\frac{163}{378}a^{15}-\frac{221}{252}a^{14}+\frac{127}{378}a^{13}-\frac{85}{126}a^{12}-\frac{1109}{36}a^{11}+\frac{1127}{18}a^{10}+\frac{17417}{252}a^{9}-\frac{35605}{252}a^{8}+\frac{2953}{21}a^{7}-\frac{23641}{84}a^{6}-\frac{3162}{7}a^{5}+\frac{38597}{42}a^{4}+\frac{8201}{28}a^{3}-\frac{8735}{14}a^{2}-\frac{983}{28}a+\frac{2697}{28}$, $\frac{2}{189}a^{15}-\frac{103}{378}a^{14}-\frac{5}{378}a^{13}-\frac{53}{252}a^{12}-\frac{7}{9}a^{11}+\frac{175}{9}a^{10}+\frac{407}{126}a^{9}-\frac{11059}{252}a^{8}+\frac{17}{42}a^{7}-\frac{1828}{21}a^{6}-\frac{401}{21}a^{5}+\frac{7995}{28}a^{4}+\frac{375}{14}a^{3}-\frac{2735}{14}a^{2}-\frac{68}{7}a+\frac{865}{28}$, $\frac{179}{189}a^{15}+\frac{173}{378}a^{14}-\frac{575}{756}a^{13}+\frac{22}{63}a^{12}+\frac{811}{12}a^{11}-\frac{1177}{36}a^{10}-\frac{18937}{126}a^{9}+\frac{18619}{252}a^{8}-\frac{6478}{21}a^{7}+\frac{6197}{42}a^{6}+\frac{82343}{84}a^{5}-\frac{10093}{21}a^{4}-\frac{18027}{28}a^{3}+\frac{9019}{28}a^{2}+\frac{1287}{14}a-\frac{1383}{28}$, $\frac{619}{756}a^{15}+\frac{619}{756}a^{14}-\frac{151}{252}a^{13}+\frac{151}{252}a^{12}+\frac{2107}{36}a^{11}-\frac{2107}{36}a^{10}-\frac{33767}{252}a^{9}+\frac{33767}{252}a^{8}-\frac{21935}{84}a^{7}+\frac{21935}{84}a^{6}+\frac{24389}{28}a^{5}-\frac{24389}{28}a^{4}-\frac{16663}{28}a^{3}+\frac{16663}{28}a^{2}+\frac{2461}{28}a-\frac{2489}{28}$
|
| |
Regulator: | \( 6828348.410317181 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{2}\cdot 6828348.410317181 \cdot 1}{2\cdot\sqrt{2450839029319069455089664}}\cr\approx \mathstrut & 0.352653312539926 \end{aligned}\] (assuming GRH)
Galois group
$(C_2^3\times C_4):C_4$ (as 16T292):
A solvable group of order 128 |
The 26 conjugacy class representatives for $(C_2^3\times C_4):C_4$ |
Character table for $(C_2^3\times C_4):C_4$ |
Intermediate fields
\(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\zeta_{16})^+\), 4.4.18432.1, \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\zeta_{48})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{12}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.62h1.2057 | $x^{16} + 8 x^{15} + 20 x^{12} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 30$ | $16$ | $1$ | $62$ | 16T292 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.4.4.12a1.1 | $x^{16} + 8 x^{15} + 24 x^{14} + 32 x^{13} + 24 x^{12} + 48 x^{11} + 96 x^{10} + 64 x^{9} + 24 x^{8} + 96 x^{7} + 96 x^{6} + 32 x^{4} + 64 x^{3} + 3 x^{2} + 16$ | $4$ | $4$ | $12$ | $C_8: C_2$ | $$[\ ]_{4}^{4}$$ |