Normalized defining polynomial
\( x^{16} - 24x^{14} + 252x^{12} - 1512x^{10} + 6210x^{8} - 20088x^{6} + 44388x^{4} - 44712x^{2} + 3969 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[8, 4]$ |
| |
Discriminant: |
\(9803356117276277820358656\)
\(\medspace = 2^{64}\cdot 3^{12}\)
|
| |
Root discriminant: | \(36.47\) |
| |
Galois root discriminant: | $2^{137/32}3^{3/4}\approx 44.32263892833827$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_4$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}$, $\frac{1}{3}a^{5}$, $\frac{1}{3}a^{6}$, $\frac{1}{3}a^{7}$, $\frac{1}{144}a^{8}-\frac{1}{6}a^{7}+\frac{1}{12}a^{6}-\frac{1}{6}a^{5}+\frac{1}{24}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{16}$, $\frac{1}{144}a^{9}+\frac{1}{12}a^{7}-\frac{1}{6}a^{6}+\frac{1}{24}a^{5}-\frac{1}{6}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{16}a-\frac{1}{2}$, $\frac{1}{144}a^{10}-\frac{1}{6}a^{7}+\frac{1}{24}a^{6}-\frac{1}{6}a^{5}+\frac{1}{12}a^{4}-\frac{1}{2}a^{3}-\frac{1}{16}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{144}a^{11}+\frac{1}{24}a^{7}-\frac{1}{6}a^{6}+\frac{1}{12}a^{5}-\frac{1}{6}a^{4}-\frac{1}{16}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{38448}a^{12}-\frac{1}{2136}a^{10}+\frac{11}{4272}a^{8}+\frac{175}{1068}a^{6}-\frac{137}{1424}a^{4}+\frac{19}{712}a^{2}-\frac{151}{1424}$, $\frac{1}{38448}a^{13}-\frac{1}{2136}a^{11}+\frac{11}{4272}a^{9}+\frac{175}{1068}a^{7}-\frac{137}{1424}a^{5}+\frac{19}{712}a^{3}-\frac{151}{1424}a$, $\frac{1}{38448}a^{14}+\frac{7}{6408}a^{10}+\frac{1}{534}a^{8}-\frac{1}{6}a^{7}+\frac{263}{4272}a^{6}-\frac{1}{6}a^{5}+\frac{137}{1068}a^{4}-\frac{1}{2}a^{3}-\frac{67}{356}a^{2}-\frac{1}{2}a-\frac{101}{356}$, $\frac{1}{269136}a^{15}-\frac{1}{89712}a^{13}+\frac{5}{2136}a^{11}+\frac{1}{6408}a^{9}+\frac{1049}{9968}a^{7}+\frac{1247}{29904}a^{5}-\frac{51}{2492}a^{3}+\frac{131}{623}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1}{9612}a^{12}+\frac{1}{534}a^{10}-\frac{11}{1068}a^{8}+\frac{1}{89}a^{6}+\frac{55}{1068}a^{4}-\frac{19}{178}a^{2}+\frac{863}{356}$, $\frac{7}{19224}a^{12}-\frac{7}{1068}a^{10}+\frac{40}{801}a^{8}-\frac{55}{267}a^{6}+\frac{1573}{2136}a^{4}-\frac{757}{356}a^{2}+\frac{139}{356}$, $\frac{31}{38448}a^{14}+\frac{221}{12816}a^{12}-\frac{2009}{12816}a^{10}+\frac{10099}{12816}a^{8}-\frac{45}{16}a^{6}+\frac{11849}{1424}a^{4}-\frac{17317}{1424}a^{2}+\frac{699}{1424}$, $\frac{73}{38448}a^{14}-\frac{65}{1602}a^{12}+\frac{4775}{12816}a^{10}-\frac{6113}{3204}a^{8}+\frac{9851}{1424}a^{6}-\frac{3673}{178}a^{4}+\frac{46379}{1424}a^{2}-\frac{2595}{356}$, $\frac{37}{269136}a^{15}+\frac{11}{9612}a^{14}+\frac{839}{269136}a^{13}-\frac{155}{6408}a^{12}-\frac{133}{4272}a^{11}+\frac{469}{2136}a^{10}+\frac{1145}{6408}a^{9}-\frac{14237}{12816}a^{8}-\frac{21757}{29904}a^{7}+\frac{4259}{1068}a^{6}+\frac{70817}{29904}a^{5}-\frac{1039}{89}a^{4}-\frac{48893}{9968}a^{3}+\frac{12123}{712}a^{2}+\frac{2300}{623}a-\frac{3815}{1424}$, $\frac{97}{67284}a^{15}+\frac{1}{9612}a^{14}-\frac{4663}{134568}a^{13}-\frac{7}{9612}a^{12}+\frac{4663}{12816}a^{11}-\frac{11}{1068}a^{10}-\frac{1163}{534}a^{9}+\frac{703}{4272}a^{8}+\frac{1495}{168}a^{7}-\frac{247}{267}a^{6}-\frac{428255}{14952}a^{5}+\frac{7295}{2136}a^{4}+\frac{625559}{9968}a^{3}-\frac{23}{2}a^{2}-\frac{37316}{623}a+\frac{24595}{1424}$, $\frac{5}{14952}a^{15}+\frac{1}{9612}a^{14}+\frac{1045}{134568}a^{13}-\frac{17}{4806}a^{12}-\frac{967}{12816}a^{11}+\frac{43}{1068}a^{10}+\frac{433}{1068}a^{9}-\frac{1019}{4272}a^{8}-\frac{2791}{1869}a^{7}+\frac{469}{534}a^{6}+\frac{69521}{14952}a^{5}-\frac{6289}{2136}a^{4}-\frac{80067}{9968}a^{3}+\frac{911}{178}a^{2}+\frac{7489}{2492}a-\frac{1639}{1424}$, $\frac{5}{14952}a^{15}+\frac{1}{9612}a^{14}-\frac{1045}{134568}a^{13}-\frac{35}{9612}a^{12}+\frac{967}{12816}a^{11}+\frac{15}{356}a^{10}-\frac{433}{1068}a^{9}-\frac{1063}{4272}a^{8}+\frac{2791}{1869}a^{7}+\frac{475}{534}a^{6}-\frac{69521}{14952}a^{5}-\frac{6179}{2136}a^{4}+\frac{80067}{9968}a^{3}+\frac{446}{89}a^{2}-\frac{7489}{2492}a+\frac{389}{1424}$, $\frac{19}{33642}a^{15}+\frac{11}{9612}a^{14}-\frac{19}{1512}a^{13}-\frac{17}{712}a^{12}+\frac{775}{6408}a^{11}+\frac{457}{2136}a^{10}-\frac{8417}{12816}a^{9}-\frac{13663}{12816}a^{8}+\frac{4679}{1869}a^{7}+\frac{4045}{1068}a^{6}-\frac{4821}{623}a^{5}-\frac{986}{89}a^{4}+\frac{71569}{4984}a^{3}+\frac{11283}{712}a^{2}-\frac{92469}{9968}a-\frac{109}{1424}$, $\frac{5}{14952}a^{15}+\frac{11}{19224}a^{14}-\frac{145}{22428}a^{13}-\frac{467}{38448}a^{12}+\frac{667}{12816}a^{11}+\frac{473}{4272}a^{10}-\frac{1417}{6408}a^{9}-\frac{7229}{12816}a^{8}+\frac{855}{1246}a^{7}+\frac{545}{267}a^{6}-\frac{4469}{2492}a^{5}-\frac{8661}{1424}a^{4}+\frac{3655}{9968}a^{3}+\frac{13649}{1424}a^{2}+\frac{20897}{4984}a-\frac{2629}{1424}$, $\frac{17}{12816}a^{15}-\frac{11}{19224}a^{14}+\frac{121}{4272}a^{13}+\frac{457}{38448}a^{12}-\frac{833}{3204}a^{11}-\frac{151}{1424}a^{10}+\frac{1899}{1424}a^{9}+\frac{6721}{12816}a^{8}-\frac{20785}{4272}a^{7}-\frac{493}{267}a^{6}+\frac{701}{48}a^{5}+\frac{7539}{1424}a^{4}-\frac{16441}{712}a^{3}-\frac{10469}{1424}a^{2}+\frac{8355}{1424}a+\frac{1469}{1424}$
|
| |
Regulator: | \( 11649698.970758608 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 11649698.970758608 \cdot 1}{2\cdot\sqrt{9803356117276277820358656}}\cr\approx \mathstrut & 0.742261195582682 \end{aligned}\] (assuming GRH)
Galois group
$(C_2^3\times C_4):C_4$ (as 16T243):
A solvable group of order 128 |
The 26 conjugacy class representatives for $(C_2^3\times C_4):C_4$ |
Character table for $(C_2^3\times C_4):C_4$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 4.4.18432.1, 4.2.9216.1, 4.2.2048.1, 8.4.5435817984.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | 16.8.612709757329767363772416.21, 16.0.612709757329767363772416.95, 16.0.9803356117276277820358656.257, 16.12.2450839029319069455089664.4, 16.4.2450839029319069455089664.110 |
Degree 32 siblings: | deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32, deg 32 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.64l1.182 | $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 8 x^{8} + 16 x^{7} + 8 x^{6} + 16 x + 18$ | $16$ | $1$ | $64$ | 16T243 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.2.4.6a1.1 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 16$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $$[\ ]_{4}^{4}$$ |
3.2.4.6a1.1 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 16$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $$[\ ]_{4}^{4}$$ |