Normalized defining polynomial
\( x^{16} - x^{15} + 2 x^{14} - 5 x^{13} + 5 x^{12} + x^{11} + 6 x^{10} + 5 x^{9} - 21 x^{8} + 10 x^{7} + \cdots + 256 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(9234096523681640625\)
\(\medspace = 3^{8}\cdot 5^{12}\cdot 7^{8}\)
|
| |
Root discriminant: | \(15.32\) |
| |
Galois root discriminant: | $3^{1/2}5^{3/4}7^{1/2}\approx 15.322765339111537$ | ||
Ramified primes: |
\(3\), \(5\), \(7\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2^2\times C_4$ |
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(105=3\cdot 5\cdot 7\) | ||
Dirichlet character group: | $\lbrace$$\chi_{105}(64,·)$, $\chi_{105}(1,·)$, $\chi_{105}(71,·)$, $\chi_{105}(8,·)$, $\chi_{105}(76,·)$, $\chi_{105}(13,·)$, $\chi_{105}(83,·)$, $\chi_{105}(22,·)$, $\chi_{105}(92,·)$, $\chi_{105}(29,·)$, $\chi_{105}(97,·)$, $\chi_{105}(34,·)$, $\chi_{105}(104,·)$, $\chi_{105}(41,·)$, $\chi_{105}(43,·)$, $\chi_{105}(62,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | unavailable$^{128}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{2}a^{8}-\frac{1}{4}a^{7}+\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{11}-\frac{1}{8}a^{10}-\frac{1}{4}a^{9}-\frac{1}{8}a^{8}-\frac{3}{8}a^{7}-\frac{3}{8}a^{6}+\frac{1}{4}a^{5}+\frac{1}{8}a^{4}+\frac{3}{8}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{16}a^{12}-\frac{1}{16}a^{11}-\frac{1}{8}a^{10}-\frac{1}{16}a^{9}-\frac{3}{16}a^{8}+\frac{5}{16}a^{7}+\frac{1}{8}a^{6}+\frac{1}{16}a^{5}+\frac{3}{16}a^{4}+\frac{3}{8}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{2848}a^{13}-\frac{73}{2848}a^{12}-\frac{51}{1424}a^{11}+\frac{27}{2848}a^{10}+\frac{13}{2848}a^{9}+\frac{777}{2848}a^{8}+\frac{151}{1424}a^{7}-\frac{1083}{2848}a^{6}-\frac{221}{2848}a^{5}+\frac{561}{1424}a^{4}-\frac{37}{356}a^{3}-\frac{27}{356}a^{2}-\frac{1}{178}a-\frac{39}{89}$, $\frac{1}{5696}a^{14}-\frac{1}{5696}a^{13}-\frac{9}{2848}a^{12}+\frac{159}{5696}a^{11}-\frac{179}{5696}a^{10}+\frac{645}{5696}a^{9}-\frac{535}{2848}a^{8}+\frac{1793}{5696}a^{7}+\frac{835}{5696}a^{6}+\frac{259}{2848}a^{5}+\frac{275}{1424}a^{4}+\frac{123}{356}a^{3}-\frac{83}{356}a^{2}+\frac{7}{89}a+\frac{20}{89}$, $\frac{1}{11392}a^{15}-\frac{1}{11392}a^{14}-\frac{1}{5696}a^{13}-\frac{297}{11392}a^{12}+\frac{325}{11392}a^{11}-\frac{347}{11392}a^{10}+\frac{637}{5696}a^{9}-\frac{2151}{11392}a^{8}+\frac{3531}{11392}a^{7}+\frac{851}{5696}a^{6}+\frac{281}{2848}a^{5}+\frac{265}{1424}a^{4}+\frac{61}{178}a^{3}-\frac{47}{178}a^{2}+\frac{8}{89}a+\frac{22}{89}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
| |
Relative class number: | $1$ |
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( \frac{1}{356} a^{15} - \frac{3}{356} a^{14} + \frac{3}{178} a^{12} + \frac{7}{356} a^{11} + \frac{11}{356} a^{10} - \frac{4}{89} a^{9} - \frac{11}{356} a^{8} + \frac{17}{178} a^{7} + \frac{8}{89} a^{6} + \frac{22}{89} a^{5} - \frac{20}{89} a^{4} - \frac{8}{89} a^{3} + \frac{271}{356} a^{2} + \frac{32}{89} a + \frac{64}{89} \)
(order $30$)
|
| |
Fundamental units: |
$\frac{71}{5696}a^{15}-\frac{47}{2848}a^{14}+\frac{187}{5696}a^{13}-\frac{291}{5696}a^{12}+\frac{155}{2848}a^{11}-\frac{77}{2848}a^{10}-\frac{147}{5696}a^{9}+\frac{715}{5696}a^{8}-\frac{363}{2848}a^{7}+\frac{215}{5696}a^{6}+\frac{33}{712}a^{5}-\frac{219}{356}a^{4}+\frac{1025}{712}a^{3}-\frac{110}{89}a^{2}+\frac{142}{89}a-\frac{188}{89}$, $\frac{39}{5696}a^{15}-\frac{51}{5696}a^{14}-\frac{3}{712}a^{13}-\frac{193}{5696}a^{12}+\frac{75}{5696}a^{11}+\frac{429}{5696}a^{10}-\frac{57}{1424}a^{9}-\frac{679}{5696}a^{8}-\frac{1419}{5696}a^{7}+\frac{3}{89}a^{6}+\frac{1353}{2848}a^{5}-\frac{219}{1424}a^{4}-\frac{159}{712}a^{3}-\frac{495}{356}a^{2}-\frac{9}{178}a+\frac{34}{89}$, $\frac{1}{11392}a^{15}-\frac{135}{11392}a^{14}-\frac{353}{11392}a^{12}+\frac{315}{11392}a^{11}+\frac{139}{11392}a^{10}-\frac{45}{712}a^{9}-\frac{495}{11392}a^{8}-\frac{2475}{11392}a^{7}+\frac{45}{356}a^{6}+\frac{11}{2848}a^{5}-\frac{225}{712}a^{4}-\frac{45}{356}a^{3}-\frac{495}{356}a^{2}+\frac{45}{89}a-\frac{31}{89}$, $\frac{49}{5696}a^{15}-\frac{117}{5696}a^{14}+\frac{49}{2848}a^{13}-\frac{245}{5696}a^{12}+\frac{245}{5696}a^{11}+\frac{49}{5696}a^{10}-\frac{387}{2848}a^{9}+\frac{245}{5696}a^{8}-\frac{1029}{5696}a^{7}+\frac{245}{2848}a^{6}+\frac{147}{712}a^{5}-\frac{1415}{1424}a^{4}+\frac{245}{356}a^{3}-\frac{245}{178}a^{2}+\frac{98}{89}a-\frac{98}{89}$, $\frac{1}{11392}a^{15}-\frac{3}{11392}a^{14}+\frac{13}{2848}a^{13}+\frac{215}{11392}a^{12}+\frac{399}{11392}a^{11}-\frac{9}{11392}a^{10}-\frac{191}{2848}a^{9}+\frac{521}{11392}a^{8}+\frac{1409}{11392}a^{7}+\frac{525}{2848}a^{6}+\frac{353}{2848}a^{5}-\frac{549}{1424}a^{4}+\frac{15}{712}a^{3}+\frac{261}{356}a^{2}+\frac{167}{178}a+\frac{29}{89}$, $\frac{31}{11392}a^{15}-\frac{9}{11392}a^{14}+\frac{1}{89}a^{13}-\frac{159}{11392}a^{12}-\frac{219}{11392}a^{11}-\frac{427}{11392}a^{10}+\frac{3}{178}a^{9}+\frac{1167}{11392}a^{8}+\frac{43}{11392}a^{7}-\frac{57}{356}a^{6}-\frac{331}{2848}a^{5}+\frac{75}{356}a^{4}+\frac{237}{356}a^{3}-\frac{24}{89}a^{2}-\frac{13}{89}a-\frac{97}{89}$, $\frac{261}{11392}a^{15}+\frac{103}{11392}a^{14}+\frac{161}{5696}a^{13}-\frac{1373}{11392}a^{12}-\frac{451}{11392}a^{11}-\frac{643}{11392}a^{10}+\frac{1003}{5696}a^{9}+\frac{1965}{11392}a^{8}-\frac{6125}{11392}a^{7}-\frac{2371}{5696}a^{6}-\frac{375}{2848}a^{5}+\frac{633}{1424}a^{4}+\frac{601}{356}a^{3}-\frac{579}{178}a^{2}-\frac{253}{178}a-\frac{527}{89}$
|
| |
Regulator: | \( 7204.63964805 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 7204.63964805 \cdot 1}{30\cdot\sqrt{9234096523681640625}}\cr\approx \mathstrut & 0.191969728614 \end{aligned}\]
Galois group
$C_2^2\times C_4$ (as 16T2):
An abelian group of order 16 |
The 16 conjugacy class representatives for $C_4\times C_2^2$ |
Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{4}$ | R | R | R | ${\href{/padicField/11.2.0.1}{2} }^{8}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(5\)
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
\(7\)
| 7.4.2.4a1.2 | $x^{8} + 10 x^{6} + 8 x^{5} + 31 x^{4} + 40 x^{3} + 46 x^{2} + 24 x + 16$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
7.4.2.4a1.2 | $x^{8} + 10 x^{6} + 8 x^{5} + 31 x^{4} + 40 x^{3} + 46 x^{2} + 24 x + 16$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |