Normalized defining polynomial
\( x^{16} - x^{15} + 2 x^{14} - 5 x^{13} + 5 x^{12} + x^{11} + 6 x^{10} + 5 x^{9} - 21 x^{8} + 10 x^{7} + 24 x^{6} + 8 x^{5} + 80 x^{4} - 160 x^{3} + 128 x^{2} - 128 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9234096523681640625=3^{8}\cdot 5^{12}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(105=3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{105}(64,·)$, $\chi_{105}(1,·)$, $\chi_{105}(71,·)$, $\chi_{105}(8,·)$, $\chi_{105}(76,·)$, $\chi_{105}(13,·)$, $\chi_{105}(83,·)$, $\chi_{105}(22,·)$, $\chi_{105}(92,·)$, $\chi_{105}(29,·)$, $\chi_{105}(97,·)$, $\chi_{105}(34,·)$, $\chi_{105}(104,·)$, $\chi_{105}(41,·)$, $\chi_{105}(43,·)$, $\chi_{105}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{8} a^{8} - \frac{3}{8} a^{7} - \frac{3}{8} a^{6} + \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{1}{16} a^{9} - \frac{3}{16} a^{8} + \frac{5}{16} a^{7} + \frac{1}{8} a^{6} + \frac{1}{16} a^{5} + \frac{3}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{2848} a^{13} - \frac{73}{2848} a^{12} - \frac{51}{1424} a^{11} + \frac{27}{2848} a^{10} + \frac{13}{2848} a^{9} + \frac{777}{2848} a^{8} + \frac{151}{1424} a^{7} - \frac{1083}{2848} a^{6} - \frac{221}{2848} a^{5} + \frac{561}{1424} a^{4} - \frac{37}{356} a^{3} - \frac{27}{356} a^{2} - \frac{1}{178} a - \frac{39}{89}$, $\frac{1}{5696} a^{14} - \frac{1}{5696} a^{13} - \frac{9}{2848} a^{12} + \frac{159}{5696} a^{11} - \frac{179}{5696} a^{10} + \frac{645}{5696} a^{9} - \frac{535}{2848} a^{8} + \frac{1793}{5696} a^{7} + \frac{835}{5696} a^{6} + \frac{259}{2848} a^{5} + \frac{275}{1424} a^{4} + \frac{123}{356} a^{3} - \frac{83}{356} a^{2} + \frac{7}{89} a + \frac{20}{89}$, $\frac{1}{11392} a^{15} - \frac{1}{11392} a^{14} - \frac{1}{5696} a^{13} - \frac{297}{11392} a^{12} + \frac{325}{11392} a^{11} - \frac{347}{11392} a^{10} + \frac{637}{5696} a^{9} - \frac{2151}{11392} a^{8} + \frac{3531}{11392} a^{7} + \frac{851}{5696} a^{6} + \frac{281}{2848} a^{5} + \frac{265}{1424} a^{4} + \frac{61}{178} a^{3} - \frac{47}{178} a^{2} + \frac{8}{89} a + \frac{22}{89}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{356} a^{15} - \frac{3}{356} a^{14} + \frac{3}{178} a^{12} + \frac{7}{356} a^{11} + \frac{11}{356} a^{10} - \frac{4}{89} a^{9} - \frac{11}{356} a^{8} + \frac{17}{178} a^{7} + \frac{8}{89} a^{6} + \frac{22}{89} a^{5} - \frac{20}{89} a^{4} - \frac{8}{89} a^{3} + \frac{271}{356} a^{2} + \frac{32}{89} a + \frac{64}{89} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7204.63964805 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |