sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(105, base_ring=CyclotomicField(4))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([0,3,2]))
pari: [g,chi] = znchar(Mod(13,105))
Basic properties
Modulus: | \(105\) | |
Conductor: | \(35\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(4\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{35}(13,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 105.m
\(\chi_{105}(13,\cdot)\) \(\chi_{105}(97,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\sqrt{-1}) \) |
Fixed field: | 4.4.6125.1 |
Values on generators
\((71,22,31)\) → \((1,-i,-1)\)
Values
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\(1\) | \(1\) | \(-i\) | \(-1\) | \(i\) | \(1\) | \(-i\) | \(1\) | \(i\) | \(1\) | \(-i\) | \(i\) |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{105}(13,\cdot)) = \sum_{r\in \Z/105\Z} \chi_{105}(13,r) e\left(\frac{2r}{105}\right) = 3.1102672038+5.0325180498i \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{105}(13,\cdot),\chi_{105}(1,\cdot)) = \sum_{r\in \Z/105\Z} \chi_{105}(13,r) \chi_{105}(1,1-r) = 1 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{105}(13,·))
= \sum_{r \in \Z/105\Z}
\chi_{105}(13,r) e\left(\frac{1 r + 2 r^{-1}}{105}\right)
= 7.7568795304+-7.7568795304i \)