Normalized defining polynomial
\( x^{16} - 8 x^{15} + 484 x^{14} - 3248 x^{13} + 95050 x^{12} - 528440 x^{11} + 9696320 x^{10} - 43714024 x^{9} + 546280763 x^{8} - 1928520760 x^{7} + 16644202576 x^{6} - 43360708648 x^{5} + 248075557402 x^{4} - 426048616864 x^{3} + 1380990979420 x^{2} - 1174884720024 x + 4002399015119 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(901163823601834744225359462400000000=2^{62}\cdot 5^{8}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $176.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4640=2^{5}\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4640}(1,·)$, $\chi_{4640}(579,·)$, $\chi_{4640}(1161,·)$, $\chi_{4640}(1739,·)$, $\chi_{4640}(2321,·)$, $\chi_{4640}(4291,·)$, $\chi_{4640}(3481,·)$, $\chi_{4640}(2899,·)$, $\chi_{4640}(4059,·)$, $\chi_{4640}(929,·)$, $\chi_{4640}(2089,·)$, $\chi_{4640}(811,·)$, $\chi_{4640}(3249,·)$, $\chi_{4640}(1971,·)$, $\chi_{4640}(4409,·)$, $\chi_{4640}(3131,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{29} a^{4} - \frac{2}{29} a^{3} - \frac{1}{29} a^{2} + \frac{2}{29} a + \frac{1}{29}$, $\frac{1}{29} a^{5} - \frac{5}{29} a^{3} + \frac{5}{29} a + \frac{2}{29}$, $\frac{1}{29} a^{6} - \frac{10}{29} a^{3} + \frac{12}{29} a + \frac{5}{29}$, $\frac{1}{29} a^{7} + \frac{9}{29} a^{3} + \frac{2}{29} a^{2} - \frac{4}{29} a + \frac{10}{29}$, $\frac{1}{841} a^{8} - \frac{4}{841} a^{7} + \frac{2}{841} a^{6} + \frac{8}{841} a^{5} - \frac{5}{841} a^{4} - \frac{8}{841} a^{3} + \frac{2}{841} a^{2} + \frac{4}{841} a + \frac{1}{841}$, $\frac{1}{841} a^{9} - \frac{14}{841} a^{7} - \frac{13}{841} a^{6} - \frac{2}{841} a^{5} + \frac{1}{841} a^{4} + \frac{347}{841} a^{3} - \frac{17}{841} a^{2} - \frac{418}{841} a - \frac{170}{841}$, $\frac{1}{841} a^{10} - \frac{11}{841} a^{7} - \frac{3}{841} a^{6} - \frac{3}{841} a^{5} - \frac{13}{841} a^{4} + \frac{161}{841} a^{3} + \frac{16}{841} a^{2} - \frac{172}{841} a - \frac{73}{841}$, $\frac{1}{841} a^{11} + \frac{11}{841} a^{7} - \frac{10}{841} a^{6} - \frac{12}{841} a^{5} - \frac{10}{841} a^{4} - \frac{275}{841} a^{3} + \frac{82}{841} a^{2} + \frac{14}{29} a + \frac{156}{841}$, $\frac{1}{24389} a^{12} - \frac{6}{24389} a^{11} + \frac{9}{24389} a^{10} + \frac{10}{24389} a^{9} - \frac{1}{24389} a^{8} - \frac{122}{24389} a^{7} + \frac{99}{24389} a^{6} + \frac{238}{24389} a^{5} - \frac{175}{24389} a^{4} - \frac{242}{24389} a^{3} + \frac{67}{24389} a^{2} + \frac{122}{24389} a + \frac{30}{24389}$, $\frac{1}{24389} a^{13} + \frac{2}{24389} a^{11} + \frac{6}{24389} a^{10} + \frac{1}{24389} a^{9} - \frac{12}{24389} a^{8} - \frac{169}{24389} a^{7} + \frac{20}{24389} a^{6} - \frac{400}{24389} a^{5} + \frac{216}{24389} a^{4} + \frac{3139}{24389} a^{3} - \frac{172}{24389} a^{2} - \frac{3240}{24389} a - \frac{1270}{24389}$, $\frac{1}{193161844675161488223180277} a^{14} - \frac{7}{193161844675161488223180277} a^{13} - \frac{1930756168179963280739}{193161844675161488223180277} a^{12} + \frac{11584537009079779684525}{193161844675161488223180277} a^{11} - \frac{65625666578410833167915}{193161844675161488223180277} a^{10} - \frac{7744403415110744712868}{193161844675161488223180277} a^{9} - \frac{86323411766589737187314}{193161844675161488223180277} a^{8} + \frac{2356639151115036434442901}{193161844675161488223180277} a^{7} - \frac{1770232713019119387790808}{193161844675161488223180277} a^{6} - \frac{1443791032476290164704112}{193161844675161488223180277} a^{5} - \frac{92736328562416775734628}{193161844675161488223180277} a^{4} - \frac{11575997734304732884348709}{193161844675161488223180277} a^{3} + \frac{2124587431600751265203413}{6660753264660740973213113} a^{2} - \frac{42505805040651578370996988}{193161844675161488223180277} a + \frac{54918418087706487769877}{6231027247585854458812267}$, $\frac{1}{95391852211406957493671656217697029} a^{15} + \frac{246922081}{95391852211406957493671656217697029} a^{14} + \frac{101762416203882766089162757563}{95391852211406957493671656217697029} a^{13} - \frac{1138202050756491756724178582474}{95391852211406957493671656217697029} a^{12} + \frac{49004500682929361487696647452534}{95391852211406957493671656217697029} a^{11} + \frac{20846204353231549726553488605349}{95391852211406957493671656217697029} a^{10} - \frac{19918916726240912423841499359643}{95391852211406957493671656217697029} a^{9} + \frac{26131095628081713077004234206470}{95391852211406957493671656217697029} a^{8} - \frac{262937788077193766791148111470308}{95391852211406957493671656217697029} a^{7} - \frac{50572233301456930310227887181896}{3077156522948611532053924394119259} a^{6} - \frac{240141337388472135405636084296015}{95391852211406957493671656217697029} a^{5} + \frac{669196081876463560523155851577291}{95391852211406957493671656217697029} a^{4} + \frac{20476663880849602509199519572730191}{95391852211406957493671656217697029} a^{3} + \frac{44116192880674797374434965621823852}{95391852211406957493671656217697029} a^{2} + \frac{18026843126490348273501922183798170}{95391852211406957493671656217697029} a - \frac{48972156500368357217645227045095}{106108845618917639036342220486871}$
Class group and class number
$C_{6}\times C_{2814486}$, which has order $16886916$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{16})^+\), 4.4.51200.1, 8.8.2621440000.1, 8.0.1518874382041088.26, 8.0.949296488775680000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $29$ | 29.8.4.2 | $x^{8} - 24389 x^{2} + 13438339$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 29.8.4.2 | $x^{8} - 24389 x^{2} + 13438339$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |