Normalized defining polynomial
\( x^{16} - 8x^{14} + 28x^{12} - 56x^{10} + 46x^{8} + 40x^{6} - 68x^{4} - 32x^{2} + 196 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(86162309624498535530496\)
\(\medspace = 2^{54}\cdot 3^{14}\)
|
| |
Root discriminant: | \(27.13\) |
| |
Galois root discriminant: | $2^{2217/512}3^{7/8}\approx 52.59742670204766$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{2}a^{12}$, $\frac{1}{2}a^{13}$, $\frac{1}{1185406}a^{14}-\frac{122079}{1185406}a^{12}-\frac{12946}{592703}a^{10}-\frac{222823}{1185406}a^{8}+\frac{246553}{592703}a^{6}-\frac{105606}{592703}a^{4}+\frac{139742}{592703}a^{2}+\frac{139345}{592703}$, $\frac{1}{8297842}a^{15}+\frac{1063327}{8297842}a^{13}+\frac{80973}{1185406}a^{11}+\frac{26420}{592703}a^{9}-\frac{1531556}{4148921}a^{7}-\frac{1883715}{4148921}a^{5}+\frac{139742}{4148921}a^{3}-\frac{1046061}{4148921}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -\frac{32}{3071} a^{14} + \frac{216}{3071} a^{12} - \frac{626}{3071} a^{10} + \frac{2019}{6142} a^{8} - \frac{594}{3071} a^{6} - \frac{487}{3071} a^{4} - \frac{736}{3071} a^{2} + \frac{3175}{3071} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{3707}{592703}a^{14}-\frac{36225}{1185406}a^{12}+\frac{36242}{592703}a^{10}-\frac{146461}{1185406}a^{8}+\frac{47890}{592703}a^{6}-\frac{2221}{592703}a^{4}+\frac{2344}{592703}a^{2}+\frac{22501}{592703}$, $\frac{3571}{592703}a^{14}+\frac{22105}{1185406}a^{12}-\frac{1336}{592703}a^{10}-\frac{5689}{1185406}a^{8}+\frac{39087}{592703}a^{6}+\frac{319836}{592703}a^{4}-\frac{518215}{592703}a^{2}-\frac{53653}{592703}$, $\frac{4598}{592703}a^{14}-\frac{29501}{592703}a^{12}+\frac{81887}{592703}a^{10}-\frac{106037}{1185406}a^{8}-\frac{380290}{592703}a^{6}+\frac{1472847}{592703}a^{4}-\frac{2283484}{592703}a^{2}+\frac{1770843}{592703}$, $\frac{182101}{8297842}a^{15}+\frac{26991}{1185406}a^{14}-\frac{690982}{4148921}a^{13}-\frac{99156}{592703}a^{12}+\frac{295871}{592703}a^{11}+\frac{269284}{592703}a^{10}-\frac{454534}{592703}a^{9}-\frac{650955}{1185406}a^{8}+\frac{888306}{4148921}a^{7}-\frac{157261}{592703}a^{6}+\frac{6403065}{4148921}a^{5}+\frac{1082587}{592703}a^{4}-\frac{2323472}{4148921}a^{3}-\frac{185570}{592703}a^{2}-\frac{7642130}{4148921}a-\frac{2010452}{592703}$, $\frac{52715}{4148921}a^{15}-\frac{16245}{1185406}a^{14}+\frac{1428731}{8297842}a^{13}-\frac{10883}{1185406}a^{12}-\frac{437392}{592703}a^{11}+\frac{389113}{1185406}a^{10}+\frac{836203}{592703}a^{9}-\frac{531496}{592703}a^{8}-\frac{4056240}{4148921}a^{7}+\frac{826092}{592703}a^{6}-\frac{8775820}{4148921}a^{5}+\frac{286988}{592703}a^{4}+\frac{12266174}{4148921}a^{3}-\frac{2427112}{592703}a^{2}+\frac{24486734}{4148921}a-\frac{3090283}{592703}$, $\frac{9099}{1185406}a^{15}-\frac{14139}{592703}a^{14}+\frac{71399}{1185406}a^{13}+\frac{123845}{592703}a^{12}-\frac{152243}{592703}a^{11}-\frac{999635}{1185406}a^{10}+\frac{507460}{592703}a^{9}+\frac{2334013}{1185406}a^{8}-\frac{1190298}{592703}a^{7}-\frac{1245751}{592703}a^{6}+\frac{1915540}{592703}a^{5}-\frac{303949}{592703}a^{4}-\frac{1942632}{592703}a^{3}+\frac{2297437}{592703}a^{2}+\frac{1076968}{592703}a-\frac{2479178}{592703}$, $\frac{67552}{4148921}a^{15}-\frac{42023}{1185406}a^{14}-\frac{403769}{4148921}a^{13}+\frac{140676}{592703}a^{12}+\frac{256921}{1185406}a^{11}-\frac{735895}{1185406}a^{10}-\frac{212275}{1185406}a^{9}+\frac{380819}{592703}a^{8}-\frac{204791}{4148921}a^{7}+\frac{144424}{592703}a^{6}+\frac{1531701}{4148921}a^{5}-\frac{871829}{592703}a^{4}+\frac{2112618}{4148921}a^{3}-\frac{469445}{592703}a^{2}-\frac{2329321}{4148921}a+\frac{1396111}{592703}$
|
| |
Regulator: | \( 961252.7821221594 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 961252.7821221594 \cdot 1}{6\cdot\sqrt{86162309624498535530496}}\cr\approx \mathstrut & 1.32576527708900 \end{aligned}\]
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1455):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.432.1, 8.0.573308928.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{6}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{5}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.54a2.760 | $x^{16} + 8 x^{15} + 36 x^{14} + 112 x^{13} + 268 x^{12} + 528 x^{11} + 892 x^{10} + 1328 x^{9} + 1769 x^{8} + 2120 x^{7} + 2284 x^{6} + 2168 x^{5} + 1780 x^{4} + 1216 x^{3} + 660 x^{2} + 256 x + 59$ | $8$ | $2$ | $54$ | 16T1455 | $$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4, \frac{9}{2}, \frac{9}{2}]^{2}$$ |
\(3\)
| 3.1.8.7a1.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |
3.1.8.7a1.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |