Normalized defining polynomial
\( x^{16} + 4x^{14} - 2x^{12} + 16x^{10} + 22x^{8} - 200x^{6} + 304x^{4} - 320x^{2} + 196 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(86162309624498535530496\)
\(\medspace = 2^{54}\cdot 3^{14}\)
|
| |
Root discriminant: | \(27.13\) |
| |
Galois root discriminant: | $2^{2217/512}3^{7/8}\approx 52.59742670204766$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{26}a^{12}-\frac{3}{26}a^{10}-\frac{1}{13}a^{8}+\frac{1}{13}a^{6}-\frac{1}{13}a^{4}+\frac{3}{13}a^{2}-\frac{4}{13}$, $\frac{1}{26}a^{13}-\frac{3}{26}a^{11}-\frac{1}{13}a^{9}+\frac{1}{13}a^{7}-\frac{1}{13}a^{5}+\frac{3}{13}a^{3}-\frac{4}{13}a$, $\frac{1}{3146}a^{14}-\frac{2}{1573}a^{12}-\frac{227}{1573}a^{10}+\frac{381}{3146}a^{8}+\frac{544}{1573}a^{6}-\frac{217}{1573}a^{4}-\frac{774}{1573}a^{2}-\frac{139}{1573}$, $\frac{1}{22022}a^{15}-\frac{367}{22022}a^{13}+\frac{635}{22022}a^{11}-\frac{5185}{22022}a^{9}+\frac{1754}{11011}a^{7}-\frac{4573}{11011}a^{5}+\frac{4429}{11011}a^{3}-\frac{141}{847}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( \frac{163}{121} a^{14} + \frac{1721}{242} a^{12} + \frac{776}{121} a^{10} + \frac{7199}{242} a^{8} + \frac{8186}{121} a^{6} - \frac{22100}{121} a^{4} + \frac{21136}{121} a^{2} - \frac{24865}{121} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{834}{1573}a^{14}-\frac{4408}{1573}a^{12}-\frac{3966}{1573}a^{10}-\frac{36679}{3146}a^{8}-\frac{42000}{1573}a^{6}+\frac{113180}{1573}a^{4}-\frac{8324}{121}a^{2}+\frac{127066}{1573}$, $\frac{17163}{3146}a^{14}-\frac{3484}{121}a^{12}-\frac{81347}{3146}a^{10}-\frac{378509}{3146}a^{8}-\frac{430709}{1573}a^{6}+\frac{89772}{121}a^{4}-\frac{1119315}{1573}a^{2}+\frac{1317469}{1573}$, $\frac{5029}{22022}a^{15}+\frac{371}{3146}a^{14}+\frac{26227}{22022}a^{13}+\frac{2025}{3146}a^{12}+\frac{22247}{22022}a^{11}+\frac{967}{1573}a^{10}+\frac{108793}{22022}a^{9}+\frac{8493}{3146}a^{8}+\frac{122176}{11011}a^{7}+\frac{10281}{1573}a^{6}-\frac{347990}{11011}a^{5}-\frac{25815}{1573}a^{4}+\frac{339529}{11011}a^{3}+\frac{1953}{121}a^{2}-\frac{28948}{847}a-\frac{32572}{1573}$, $\frac{470}{847}a^{15}-\frac{834}{1573}a^{14}-\frac{64497}{22022}a^{13}-\frac{4408}{1573}a^{12}-\frac{57929}{22022}a^{11}-\frac{3966}{1573}a^{10}-\frac{268481}{22022}a^{9}-\frac{36679}{3146}a^{8}-\frac{305465}{11011}a^{7}-\frac{42000}{1573}a^{6}+\frac{828754}{11011}a^{5}+\frac{113180}{1573}a^{4}-\frac{790178}{11011}a^{3}-\frac{8203}{121}a^{2}+\frac{945597}{11011}a+\frac{128639}{1573}$, $\frac{59175}{22022}a^{15}-\frac{9349}{3146}a^{14}+\frac{156199}{11011}a^{13}-\frac{3797}{242}a^{12}+\frac{21617}{1694}a^{11}-\frac{44399}{3146}a^{10}+\frac{652607}{11011}a^{9}-\frac{103138}{1573}a^{8}+\frac{1486361}{11011}a^{7}-\frac{234966}{1573}a^{6}-\frac{4016566}{11011}a^{5}+\frac{48869}{121}a^{4}+\frac{3845939}{11011}a^{3}-\frac{607578}{1573}a^{2}-\frac{4532405}{11011}a+\frac{715323}{1573}$, $\frac{24459}{22022}a^{15}+\frac{3771}{3146}a^{14}-\frac{63975}{11011}a^{13}+\frac{10003}{1573}a^{12}-\frac{4236}{847}a^{11}+\frac{18387}{3146}a^{10}-\frac{536699}{22022}a^{9}+\frac{83003}{3146}a^{8}-\frac{606141}{11011}a^{7}+\frac{95096}{1573}a^{6}+\frac{1684258}{11011}a^{5}-\frac{254084}{1573}a^{4}-\frac{1693305}{11011}a^{3}+\frac{233417}{1573}a^{2}+\frac{1916704}{11011}a-\frac{275998}{1573}$, $\frac{54980}{11011}a^{15}-\frac{5012}{1573}a^{14}+\frac{22315}{847}a^{13}-\frac{52953}{3146}a^{12}+\frac{520519}{22022}a^{11}-\frac{23915}{1573}a^{10}+\frac{2425165}{22022}a^{9}-\frac{221209}{3146}a^{8}+\frac{2761537}{11011}a^{7}-\frac{251387}{1573}a^{6}-\frac{574601}{847}a^{5}+\frac{679527}{1573}a^{4}+\frac{7176329}{11011}a^{3}-\frac{652981}{1573}a^{2}-\frac{8432210}{11011}a+\frac{768250}{1573}$
|
| |
Regulator: | \( 610724.4643303658 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 610724.4643303658 \cdot 1}{6\cdot\sqrt{86162309624498535530496}}\cr\approx \mathstrut & 0.842314637457230 \end{aligned}\]
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1455):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.432.1, 8.0.573308928.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{3}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{6}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.54a2.751 | $x^{16} + 8 x^{15} + 36 x^{14} + 112 x^{13} + 268 x^{12} + 528 x^{11} + 892 x^{10} + 1328 x^{9} + 1753 x^{8} + 2056 x^{7} + 2124 x^{6} + 1912 x^{5} + 1476 x^{4} + 944 x^{3} + 484 x^{2} + 176 x + 43$ | $8$ | $2$ | $54$ | 16T1455 | $$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4, \frac{9}{2}, \frac{9}{2}]^{2}$$ |
\(3\)
| 3.1.8.7a1.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |
3.1.8.7a1.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |