Normalized defining polynomial
\( x^{16} - 4x^{14} + 10x^{12} + 32x^{10} + 46x^{8} + 8x^{6} + 64x^{4} + 32x^{2} + 4 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(86162309624498535530496\)
\(\medspace = 2^{54}\cdot 3^{14}\)
|
| |
Root discriminant: | \(27.13\) |
| |
Galois root discriminant: | $2^{2217/512}3^{7/8}\approx 52.59742670204766$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{22}a^{12}+\frac{3}{22}a^{10}-\frac{3}{11}a^{6}+\frac{2}{11}a^{4}+\frac{1}{11}a^{2}-\frac{1}{11}$, $\frac{1}{22}a^{13}+\frac{3}{22}a^{11}-\frac{3}{11}a^{7}+\frac{2}{11}a^{5}+\frac{1}{11}a^{3}-\frac{1}{11}a$, $\frac{1}{16346}a^{14}-\frac{103}{8173}a^{12}+\frac{339}{1486}a^{10}-\frac{567}{16346}a^{8}+\frac{79}{8173}a^{6}-\frac{351}{8173}a^{4}+\frac{3321}{8173}a^{2}+\frac{212}{743}$, $\frac{1}{16346}a^{15}-\frac{103}{8173}a^{13}+\frac{339}{1486}a^{11}-\frac{567}{16346}a^{9}+\frac{79}{8173}a^{7}-\frac{351}{8173}a^{5}+\frac{3321}{8173}a^{3}+\frac{212}{743}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -\frac{499}{743} a^{14} + \frac{4235}{1486} a^{12} - \frac{5500}{743} a^{10} - \frac{29277}{1486} a^{8} - \frac{19402}{743} a^{6} + \frac{1088}{743} a^{4} - \frac{31784}{743} a^{2} - \frac{7690}{743} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{13445}{8173}a^{14}+\frac{56977}{8173}a^{12}-\frac{148108}{8173}a^{10}-\frac{394398}{8173}a^{8}-\frac{526860}{8173}a^{6}+\frac{17893}{8173}a^{4}-\frac{868344}{8173}a^{2}-\frac{226381}{8173}$, $\frac{16069}{8173}a^{14}-\frac{136267}{16346}a^{12}+\frac{354085}{16346}a^{10}+\frac{943439}{16346}a^{8}+\frac{625677}{8173}a^{6}-\frac{1843}{743}a^{4}+\frac{1031861}{8173}a^{2}+\frac{266143}{8173}$, $\frac{13445}{8173}a^{15}-\frac{332}{8173}a^{14}+\frac{56977}{8173}a^{13}+\frac{1522}{8173}a^{12}-\frac{148108}{8173}a^{11}-\frac{8553}{16346}a^{10}-\frac{394398}{8173}a^{9}-\frac{7908}{8173}a^{8}-\frac{526860}{8173}a^{7}-\frac{10848}{8173}a^{6}+\frac{17893}{8173}a^{5}-\frac{1724}{8173}a^{4}-\frac{868344}{8173}a^{3}-\frac{17752}{8173}a^{2}-\frac{226381}{8173}a-\frac{779}{8173}$, $\frac{7727}{8173}a^{15}-\frac{499}{743}a^{14}-\frac{5923}{1486}a^{13}+\frac{4235}{1486}a^{12}+\frac{84402}{8173}a^{11}-\frac{5500}{743}a^{10}+\frac{228363}{8173}a^{9}-\frac{29277}{1486}a^{8}+\frac{28042}{743}a^{7}-\frac{19402}{743}a^{6}-\frac{4912}{8173}a^{5}+\frac{1088}{743}a^{4}+\frac{491132}{8173}a^{3}-\frac{31784}{743}a^{2}+\frac{138454}{8173}a-\frac{7690}{743}$, $\frac{7727}{8173}a^{15}+\frac{499}{743}a^{14}-\frac{5923}{1486}a^{13}-\frac{4235}{1486}a^{12}+\frac{84402}{8173}a^{11}+\frac{5500}{743}a^{10}+\frac{228363}{8173}a^{9}+\frac{29277}{1486}a^{8}+\frac{28042}{743}a^{7}+\frac{19402}{743}a^{6}-\frac{4912}{8173}a^{5}-\frac{1088}{743}a^{4}+\frac{491132}{8173}a^{3}+\frac{31784}{743}a^{2}+\frac{138454}{8173}a+\frac{7690}{743}$, $\frac{41313}{16346}a^{15}-\frac{4179}{16346}a^{14}-\frac{87752}{8173}a^{13}+\frac{9156}{8173}a^{12}+\frac{228265}{8173}a^{11}-\frac{48847}{16346}a^{10}+\frac{1208951}{16346}a^{9}-\frac{115099}{16346}a^{8}+\frac{799939}{8173}a^{7}-\frac{74549}{8173}a^{6}-\frac{37625}{8173}a^{5}+\frac{959}{743}a^{4}+\frac{1322862}{8173}a^{3}-\frac{140389}{8173}a^{2}+\frac{326998}{8173}a-\frac{10642}{8173}$, $\frac{21795}{16346}a^{15}-\frac{19753}{16346}a^{14}+\frac{45605}{8173}a^{13}+\frac{84409}{16346}a^{12}-\frac{234545}{16346}a^{11}-\frac{110780}{8173}a^{10}-\frac{653651}{16346}a^{9}-\frac{569169}{16346}a^{8}-\frac{442359}{8173}a^{7}-\frac{378374}{8173}a^{6}+\frac{5318}{8173}a^{5}+\frac{1856}{8173}a^{4}-\frac{664606}{8173}a^{3}-\frac{677859}{8173}a^{2}-\frac{184546}{8173}a-\frac{159970}{8173}$
|
| |
Regulator: | \( 264669.5787222892 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 264669.5787222892 \cdot 1}{6\cdot\sqrt{86162309624498535530496}}\cr\approx \mathstrut & 0.365033780809587 \end{aligned}\]
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1455):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.432.1, 8.0.573308928.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{6}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{5}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.54a2.2918 | $x^{16} + 16 x^{15} + 100 x^{14} + 392 x^{13} + 1112 x^{12} + 2448 x^{11} + 4360 x^{10} + 6432 x^{9} + 8009 x^{8} + 8488 x^{7} + 7736 x^{6} + 6040 x^{5} + 4052 x^{4} + 2264 x^{3} + 1040 x^{2} + 344 x + 79$ | $8$ | $2$ | $54$ | 16T1455 | $$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4, \frac{9}{2}, \frac{9}{2}]^{2}$$ |
\(3\)
| 3.2.8.14a1.2 | $x^{16} + 16 x^{15} + 128 x^{14} + 672 x^{13} + 2576 x^{12} + 7616 x^{11} + 17920 x^{10} + 34176 x^{9} + 53344 x^{8} + 68352 x^{7} + 71680 x^{6} + 60928 x^{5} + 41216 x^{4} + 21504 x^{3} + 8192 x^{2} + 2048 x + 259$ | $8$ | $2$ | $14$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |