Normalized defining polynomial
\( x^{16} - 4 x^{15} + 15 x^{14} - 146 x^{13} + 530 x^{12} - 1742 x^{11} + 11886 x^{10} - 43533 x^{9} + \cdots + 1730321 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(72034127342222967481030341869881\)
\(\medspace = 37^{12}\cdot 149^{6}\)
|
| |
Root discriminant: | \(97.97\) |
| |
Galois root discriminant: | $37^{3/4}149^{1/2}\approx 183.12364628723972$ | ||
Ramified primes: |
\(37\), \(149\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | 4.0.50653.1 |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7}a^{12}-\frac{3}{7}a^{11}+\frac{1}{7}a^{10}-\frac{3}{7}a^{7}+\frac{3}{7}a^{6}+\frac{1}{7}a^{5}-\frac{2}{7}a^{4}-\frac{1}{7}a^{3}-\frac{3}{7}a^{2}-\frac{3}{7}a-\frac{2}{7}$, $\frac{1}{49}a^{13}+\frac{1}{49}a^{12}+\frac{3}{49}a^{11}-\frac{17}{49}a^{10}-\frac{2}{7}a^{9}-\frac{3}{49}a^{8}-\frac{16}{49}a^{7}-\frac{22}{49}a^{6}-\frac{19}{49}a^{5}-\frac{16}{49}a^{4}-\frac{22}{49}a^{2}+\frac{3}{7}a-\frac{1}{49}$, $\frac{1}{49}a^{14}+\frac{2}{49}a^{12}-\frac{20}{49}a^{11}+\frac{3}{49}a^{10}+\frac{11}{49}a^{9}-\frac{13}{49}a^{8}-\frac{6}{49}a^{7}+\frac{3}{49}a^{6}+\frac{3}{49}a^{5}+\frac{16}{49}a^{4}-\frac{22}{49}a^{3}-\frac{6}{49}a^{2}-\frac{22}{49}a+\frac{1}{49}$, $\frac{1}{17\cdots 13}a^{15}-\frac{16\cdots 48}{17\cdots 13}a^{14}+\frac{15\cdots 50}{17\cdots 13}a^{13}-\frac{28\cdots 53}{17\cdots 13}a^{12}-\frac{38\cdots 97}{17\cdots 13}a^{11}+\frac{98\cdots 64}{17\cdots 13}a^{10}+\frac{12\cdots 14}{17\cdots 13}a^{9}+\frac{35\cdots 09}{17\cdots 13}a^{8}+\frac{10\cdots 04}{17\cdots 13}a^{7}+\frac{57\cdots 09}{17\cdots 13}a^{6}+\frac{29\cdots 57}{17\cdots 13}a^{5}-\frac{76\cdots 13}{17\cdots 13}a^{4}-\frac{46\cdots 27}{17\cdots 13}a^{3}-\frac{43\cdots 26}{17\cdots 13}a^{2}+\frac{73\cdots 71}{17\cdots 13}a+\frac{64\cdots 19}{17\cdots 13}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{4}$, which has order $4$ (assuming GRH) |
| |
Narrow class group: | $C_{4}$, which has order $4$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{26\cdots 44}{27\cdots 37}a^{15}-\frac{62\cdots 10}{27\cdots 37}a^{14}+\frac{29\cdots 24}{27\cdots 37}a^{13}-\frac{34\cdots 70}{27\cdots 37}a^{12}+\frac{84\cdots 66}{27\cdots 37}a^{11}-\frac{32\cdots 66}{27\cdots 37}a^{10}+\frac{26\cdots 72}{27\cdots 37}a^{9}-\frac{72\cdots 74}{27\cdots 37}a^{8}+\frac{10\cdots 80}{27\cdots 37}a^{7}-\frac{24\cdots 00}{27\cdots 37}a^{6}+\frac{99\cdots 42}{27\cdots 37}a^{5}-\frac{11\cdots 28}{27\cdots 37}a^{4}-\frac{86\cdots 48}{27\cdots 37}a^{3}+\frac{41\cdots 76}{27\cdots 37}a^{2}+\frac{33\cdots 26}{27\cdots 37}a-\frac{23\cdots 35}{27\cdots 37}$, $\frac{59\cdots 13}{17\cdots 13}a^{15}-\frac{45\cdots 78}{17\cdots 13}a^{14}+\frac{52\cdots 49}{17\cdots 13}a^{13}-\frac{66\cdots 70}{17\cdots 13}a^{12}+\frac{79\cdots 35}{17\cdots 13}a^{11}-\frac{52\cdots 20}{17\cdots 13}a^{10}+\frac{48\cdots 29}{17\cdots 13}a^{9}-\frac{79\cdots 77}{17\cdots 13}a^{8}+\frac{65\cdots 25}{17\cdots 13}a^{7}-\frac{31\cdots 02}{17\cdots 13}a^{6}+\frac{16\cdots 93}{17\cdots 13}a^{5}-\frac{23\cdots 26}{17\cdots 13}a^{4}-\frac{34\cdots 46}{17\cdots 13}a^{3}-\frac{45\cdots 36}{17\cdots 13}a^{2}+\frac{90\cdots 15}{17\cdots 13}a+\frac{16\cdots 24}{17\cdots 13}$, $\frac{27\cdots 04}{17\cdots 13}a^{15}-\frac{13\cdots 38}{17\cdots 13}a^{14}+\frac{41\cdots 25}{17\cdots 13}a^{13}-\frac{42\cdots 25}{17\cdots 13}a^{12}+\frac{17\cdots 04}{17\cdots 13}a^{11}-\frac{49\cdots 88}{17\cdots 13}a^{10}+\frac{35\cdots 68}{17\cdots 13}a^{9}-\frac{14\cdots 39}{17\cdots 13}a^{8}+\frac{25\cdots 99}{17\cdots 13}a^{7}-\frac{46\cdots 67}{17\cdots 13}a^{6}+\frac{16\cdots 83}{17\cdots 13}a^{5}-\frac{34\cdots 48}{17\cdots 13}a^{4}+\frac{27\cdots 32}{17\cdots 13}a^{3}+\frac{38\cdots 67}{17\cdots 13}a^{2}+\frac{54\cdots 49}{17\cdots 13}a-\frac{10\cdots 07}{17\cdots 13}$, $\frac{56\cdots 41}{17\cdots 13}a^{15}-\frac{19\cdots 09}{17\cdots 13}a^{14}+\frac{43\cdots 72}{17\cdots 13}a^{13}-\frac{78\cdots 75}{17\cdots 13}a^{12}+\frac{24\cdots 33}{17\cdots 13}a^{11}-\frac{50\cdots 58}{17\cdots 13}a^{10}+\frac{62\cdots 56}{17\cdots 13}a^{9}-\frac{19\cdots 88}{17\cdots 13}a^{8}+\frac{12\cdots 04}{17\cdots 13}a^{7}-\frac{61\cdots 38}{17\cdots 13}a^{6}+\frac{27\cdots 81}{17\cdots 13}a^{5}-\frac{22\cdots 25}{17\cdots 13}a^{4}-\frac{23\cdots 27}{17\cdots 13}a^{3}-\frac{15\cdots 03}{17\cdots 13}a^{2}+\frac{73\cdots 44}{17\cdots 13}a-\frac{49\cdots 03}{17\cdots 13}$, $\frac{30\cdots 16}{17\cdots 13}a^{15}+\frac{24\cdots 60}{17\cdots 13}a^{14}-\frac{13\cdots 84}{17\cdots 13}a^{13}+\frac{20\cdots 14}{17\cdots 13}a^{12}-\frac{28\cdots 48}{17\cdots 13}a^{11}-\frac{11\cdots 22}{17\cdots 13}a^{10}-\frac{62\cdots 91}{17\cdots 13}a^{9}+\frac{26\cdots 05}{17\cdots 13}a^{8}-\frac{23\cdots 96}{17\cdots 13}a^{7}-\frac{49\cdots 88}{17\cdots 13}a^{6}-\frac{15\cdots 28}{17\cdots 13}a^{5}+\frac{39\cdots 46}{17\cdots 13}a^{4}+\frac{90\cdots 73}{17\cdots 13}a^{3}-\frac{26\cdots 34}{17\cdots 13}a^{2}+\frac{16\cdots 39}{17\cdots 13}a+\frac{18\cdots 75}{17\cdots 13}$, $\frac{80\cdots 62}{17\cdots 13}a^{15}-\frac{18\cdots 84}{17\cdots 13}a^{14}+\frac{70\cdots 22}{17\cdots 13}a^{13}-\frac{10\cdots 16}{17\cdots 13}a^{12}+\frac{17\cdots 20}{17\cdots 13}a^{11}-\frac{10\cdots 02}{17\cdots 13}a^{10}+\frac{67\cdots 27}{17\cdots 13}a^{9}-\frac{19\cdots 63}{17\cdots 13}a^{8}+\frac{18\cdots 24}{17\cdots 13}a^{7}-\frac{28\cdots 74}{17\cdots 13}a^{6}+\frac{13\cdots 45}{17\cdots 13}a^{5}-\frac{42\cdots 69}{17\cdots 13}a^{4}-\frac{89\cdots 47}{17\cdots 13}a^{3}+\frac{19\cdots 26}{17\cdots 13}a^{2}-\frac{14\cdots 98}{17\cdots 13}a+\frac{36\cdots 80}{17\cdots 13}$, $\frac{33\cdots 50}{25\cdots 59}a^{15}-\frac{87\cdots 84}{25\cdots 59}a^{14}+\frac{37\cdots 28}{25\cdots 59}a^{13}-\frac{43\cdots 62}{25\cdots 59}a^{12}+\frac{11\cdots 99}{25\cdots 59}a^{11}-\frac{41\cdots 84}{25\cdots 59}a^{10}+\frac{33\cdots 87}{25\cdots 59}a^{9}-\frac{97\cdots 87}{25\cdots 59}a^{8}+\frac{14\cdots 95}{25\cdots 59}a^{7}-\frac{32\cdots 28}{25\cdots 59}a^{6}+\frac{12\cdots 78}{25\cdots 59}a^{5}-\frac{17\cdots 61}{25\cdots 59}a^{4}-\frac{94\cdots 02}{25\cdots 59}a^{3}+\frac{89\cdots 23}{25\cdots 59}a^{2}+\frac{42\cdots 13}{25\cdots 59}a-\frac{39\cdots 52}{25\cdots 59}$
|
| |
Regulator: | \( 597275788.994 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 597275788.994 \cdot 4}{2\cdot\sqrt{72034127342222967481030341869881}}\cr\approx \mathstrut & 0.341880793716 \end{aligned}\] (assuming GRH)
Galois group
$C_4^2.(C_2\times C_4)$ (as 16T362):
A solvable group of order 128 |
The 14 conjugacy class representatives for $C_4^2.(C_2\times C_4)$ |
Character table for $C_4^2.(C_2\times C_4)$ |
Intermediate fields
\(\Q(\sqrt{37}) \), 4.0.50653.1, 8.0.56961692006209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Arithmetically equivalent siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(37\)
| 37.1.4.3a1.1 | $x^{4} + 37$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
37.1.4.3a1.1 | $x^{4} + 37$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
37.1.4.3a1.1 | $x^{4} + 37$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
37.1.4.3a1.1 | $x^{4} + 37$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
\(149\)
| 149.2.1.0a1.1 | $x^{2} + 145 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
149.1.2.1a1.2 | $x^{2} + 298$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
149.1.2.1a1.2 | $x^{2} + 298$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
149.2.1.0a1.1 | $x^{2} + 145 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
149.2.2.2a1.2 | $x^{4} + 290 x^{3} + 21029 x^{2} + 580 x + 153$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
149.2.2.2a1.2 | $x^{4} + 290 x^{3} + 21029 x^{2} + 580 x + 153$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |