Show commands: Magma
Group invariants
Abstract group: | $C_4^2.(C_2\times C_4)$ |
| |
Order: | $128=2^{7}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $5$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $362$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,10,8,11)(2,9,7,12)(3,16,5,13)(4,15,6,14)$, $(1,6)(2,5)(7,8)(9,10)(11,16)(12,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ $32$: $C_2^3 : C_4 $ $64$: $(((C_4 \times C_2): C_2):C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_2^3: C_4$
Low degree siblings
16T362, 32T826 x 2, 32T827, 32T1679, 32T1947Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
2C | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,16)(10,15)(11,13)(12,14)$ |
2D | $2^{6},1^{4}$ | $16$ | $2$ | $6$ | $( 1, 2)( 3, 7)( 4, 8)( 9,13)(10,14)(15,16)$ |
4A | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,14,10,13)(11,15,12,16)$ |
4B | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,10)(13,14)$ |
4C | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
4D1 | $4^{4}$ | $16$ | $4$ | $12$ | $( 1, 9, 3,16)( 2,10, 4,15)( 5,14, 7,12)( 6,13, 8,11)$ |
4D-1 | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,16, 3, 9)( 2,15, 4,10)( 5,12, 7,14)( 6,11, 8,13)$ |
8A | $8^{2}$ | $8$ | $8$ | $14$ | $( 1, 8, 6, 3, 2, 7, 5, 4)( 9,12,14,16,10,11,13,15)$ |
8B | $8^{2}$ | $8$ | $8$ | $14$ | $( 1, 7, 6, 4, 2, 8, 5, 3)( 9,12,14,16,10,11,13,15)$ |
8C1 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1,14, 4,15, 2,13, 3,16)( 5, 9, 8,12, 6,10, 7,11)$ |
8C-1 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1,16, 3,13, 2,15, 4,14)( 5,11, 7,10, 6,12, 8, 9)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D1 | 4D-1 | 8A | 8B | 8C1 | 8C-1 | ||
Size | 1 | 1 | 2 | 8 | 16 | 4 | 8 | 8 | 16 | 16 | 8 | 8 | 16 | 16 | |
2 P | 1A | 1A | 1A | 1A | 1A | 2A | 2B | 2A | 2C | 2C | 4A | 4A | 4C | 4C | |
Type | |||||||||||||||
128.138.1a | R | ||||||||||||||
128.138.1b | R | ||||||||||||||
128.138.1c | R | ||||||||||||||
128.138.1d | R | ||||||||||||||
128.138.1e1 | C | ||||||||||||||
128.138.1e2 | C | ||||||||||||||
128.138.1f1 | C | ||||||||||||||
128.138.1f2 | C | ||||||||||||||
128.138.2a | R | ||||||||||||||
128.138.2b | R | ||||||||||||||
128.138.4a | R | ||||||||||||||
128.138.4b | R | ||||||||||||||
128.138.4c | R | ||||||||||||||
128.138.8a | R |
Regular extensions
Data not computed