Normalized defining polynomial
    \( x^{16} - 3 x^{15} + 11 x^{14} - 17 x^{13} + 40 x^{12} - 37 x^{11} + 66 x^{10} + 25 x^{9} - 30 x^{8} + \cdots  + 551 \)
    
    
    
        
    
    
        
    
 
    
Invariants
| Degree: | $16$ |  | |
| Signature: | $[0, 8]$ |  | |
| Discriminant: | \(72011464084359765625\)
    
    \(\medspace = 5^{8}\cdot 11^{6}\cdot 101^{4}\) |  | |
| Root discriminant: | \(17.42\) |  | |
| Galois root discriminant: | $5^{1/2}11^{3/4}101^{1/2}\approx 135.73448607639935$ | ||
| Ramified primes: | \(5\), \(11\), \(101\) |  | |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |  | |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
            
    $1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{10\cdots 83}a^{15}+\frac{26\cdots 84}{10\cdots 83}a^{14}-\frac{17\cdots 91}{36\cdots 61}a^{13}-\frac{36\cdots 32}{10\cdots 83}a^{12}-\frac{286958796087661}{10\cdots 83}a^{11}-\frac{253359399792233}{10\cdots 83}a^{10}+\frac{19\cdots 75}{10\cdots 83}a^{9}-\frac{50\cdots 56}{10\cdots 83}a^{8}-\frac{25\cdots 38}{10\cdots 83}a^{7}+\frac{18\cdots 93}{10\cdots 83}a^{6}-\frac{24\cdots 94}{10\cdots 83}a^{5}+\frac{480208826706678}{36\cdots 61}a^{4}+\frac{13\cdots 62}{36\cdots 61}a^{3}-\frac{37\cdots 27}{10\cdots 83}a^{2}-\frac{318177385578827}{36\cdots 61}a+\frac{48\cdots 05}{10\cdots 83}$
    
    
    
        
    
    
        
    
            
    
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None | 
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |  | |
| Narrow class group: | Trivial group, which has order $1$ |  | 
Unit group
| Rank: | $7$ |  | |
| Torsion generator: | \( -1 \)
    
     (order $2$) |  | |
| Fundamental units: | $\frac{47979255297860}{36\cdots 61}a^{15}-\frac{120958518260070}{36\cdots 61}a^{14}+\frac{399804389921063}{36\cdots 61}a^{13}-\frac{502051535357252}{36\cdots 61}a^{12}+\frac{12\cdots 57}{36\cdots 61}a^{11}-\frac{831880711837355}{36\cdots 61}a^{10}+\frac{12\cdots 40}{36\cdots 61}a^{9}+\frac{21\cdots 20}{36\cdots 61}a^{8}-\frac{28\cdots 10}{36\cdots 61}a^{7}+\frac{74\cdots 89}{36\cdots 61}a^{6}-\frac{63\cdots 16}{36\cdots 61}a^{5}+\frac{87\cdots 63}{36\cdots 61}a^{4}-\frac{23\cdots 46}{36\cdots 61}a^{3}-\frac{10\cdots 07}{36\cdots 61}a^{2}+\frac{16\cdots 74}{36\cdots 61}a-\frac{17\cdots 25}{36\cdots 61}$, $\frac{30586511643670}{10\cdots 83}a^{15}-\frac{78054623996522}{10\cdots 83}a^{14}+\frac{90724487133625}{36\cdots 61}a^{13}-\frac{299611260405146}{10\cdots 83}a^{12}+\frac{815202652411454}{10\cdots 83}a^{11}-\frac{284677564458977}{10\cdots 83}a^{10}+\frac{11\cdots 06}{10\cdots 83}a^{9}+\frac{22\cdots 00}{10\cdots 83}a^{8}-\frac{786676490855035}{10\cdots 83}a^{7}+\frac{65\cdots 22}{10\cdots 83}a^{6}-\frac{162404509232258}{10\cdots 83}a^{5}+\frac{29\cdots 33}{36\cdots 61}a^{4}+\frac{13\cdots 37}{36\cdots 61}a^{3}-\frac{49\cdots 09}{10\cdots 83}a^{2}+\frac{74\cdots 72}{36\cdots 61}a-\frac{10\cdots 18}{10\cdots 83}$, $\frac{107277548059100}{10\cdots 83}a^{15}-\frac{240135622884094}{10\cdots 83}a^{14}+\frac{288937832673033}{36\cdots 61}a^{13}-\frac{10\cdots 35}{10\cdots 83}a^{12}+\frac{27\cdots 90}{10\cdots 83}a^{11}-\frac{19\cdots 33}{10\cdots 83}a^{10}+\frac{35\cdots 89}{10\cdots 83}a^{9}+\frac{30\cdots 15}{10\cdots 83}a^{8}-\frac{36\cdots 12}{10\cdots 83}a^{7}+\frac{12\cdots 79}{10\cdots 83}a^{6}-\frac{12\cdots 09}{10\cdots 83}a^{5}+\frac{55\cdots 70}{36\cdots 61}a^{4}-\frac{37\cdots 81}{36\cdots 61}a^{3}-\frac{18\cdots 05}{10\cdots 83}a^{2}+\frac{73\cdots 20}{36\cdots 61}a-\frac{27\cdots 86}{10\cdots 83}$, $\frac{31818207762202}{10\cdots 83}a^{15}+\frac{91748843426512}{10\cdots 83}a^{14}-\frac{47468176795687}{36\cdots 61}a^{13}+\frac{926366920577245}{10\cdots 83}a^{12}-\frac{780298202451331}{10\cdots 83}a^{11}+\frac{34\cdots 61}{10\cdots 83}a^{10}-\frac{28\cdots 99}{10\cdots 83}a^{9}+\frac{73\cdots 45}{10\cdots 83}a^{8}-\frac{180370042484188}{10\cdots 83}a^{7}+\frac{46\cdots 05}{10\cdots 83}a^{6}+\frac{76\cdots 65}{10\cdots 83}a^{5}-\frac{17\cdots 91}{36\cdots 61}a^{4}+\frac{83\cdots 31}{36\cdots 61}a^{3}-\frac{17\cdots 00}{10\cdots 83}a^{2}+\frac{37\cdots 16}{36\cdots 61}a+\frac{29\cdots 04}{10\cdots 83}$, $\frac{16102848837530}{36\cdots 61}a^{15}-\frac{89957202445965}{36\cdots 61}a^{14}+\frac{240341399606892}{36\cdots 61}a^{13}-\frac{576550597394398}{36\cdots 61}a^{12}+\frac{721155447124820}{36\cdots 61}a^{11}-\frac{14\cdots 95}{36\cdots 61}a^{10}+\frac{597887391079088}{36\cdots 61}a^{9}-\frac{11\cdots 13}{36\cdots 61}a^{8}-\frac{47\cdots 52}{36\cdots 61}a^{7}+\frac{26\cdots 14}{36\cdots 61}a^{6}-\frac{11\cdots 98}{36\cdots 61}a^{5}+\frac{16\cdots 88}{36\cdots 61}a^{4}-\frac{16\cdots 09}{36\cdots 61}a^{3}-\frac{11\cdots 60}{36\cdots 61}a^{2}+\frac{89\cdots 90}{36\cdots 61}a-\frac{32\cdots 54}{36\cdots 61}$, $\frac{181390130974232}{10\cdots 83}a^{15}-\frac{224857934845513}{10\cdots 83}a^{14}+\frac{314521262730990}{36\cdots 61}a^{13}-\frac{232744493506930}{10\cdots 83}a^{12}+\frac{27\cdots 06}{10\cdots 83}a^{11}+\frac{16\cdots 32}{10\cdots 83}a^{10}+\frac{27\cdots 71}{10\cdots 83}a^{9}+\frac{12\cdots 30}{10\cdots 83}a^{8}+\frac{42\cdots 06}{10\cdots 83}a^{7}+\frac{21\cdots 42}{10\cdots 83}a^{6}+\frac{13\cdots 03}{10\cdots 83}a^{5}+\frac{92\cdots 52}{36\cdots 61}a^{4}+\frac{13\cdots 03}{36\cdots 61}a^{3}-\frac{170027350845619}{10\cdots 83}a^{2}+\frac{15\cdots 73}{36\cdots 61}a+\frac{40\cdots 99}{10\cdots 83}$, $\frac{2436107751500}{10\cdots 83}a^{15}+\frac{70029903883457}{10\cdots 83}a^{14}-\frac{36450997334773}{36\cdots 61}a^{13}+\frac{595315781090948}{10\cdots 83}a^{12}-\frac{412167345721286}{10\cdots 83}a^{11}+\frac{16\cdots 76}{10\cdots 83}a^{10}+\frac{399107311428644}{10\cdots 83}a^{9}+\frac{19\cdots 28}{10\cdots 83}a^{8}+\frac{51\cdots 54}{10\cdots 83}a^{7}+\frac{341789539344056}{10\cdots 83}a^{6}+\frac{12\cdots 50}{10\cdots 83}a^{5}+\frac{220160614762115}{36\cdots 61}a^{4}+\frac{49\cdots 61}{36\cdots 61}a^{3}+\frac{74\cdots 99}{10\cdots 83}a^{2}-\frac{17\cdots 46}{36\cdots 61}a+\frac{21\cdots 02}{10\cdots 83}$ |  | |
| Regulator: | \( 1992.93411513 \) |  | 
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 1992.93411513 \cdot 1}{2\cdot\sqrt{72011464084359765625}}\cr\approx \mathstrut & 0.285233855498 \end{aligned}\]
Galois group
$(C_2^2\times C_4^2):D_8$ (as 16T1276):
| A solvable group of order 1024 | 
| The 43 conjugacy class representatives for $(C_2^2\times C_4^2):D_8$ | 
| Character table for $(C_2^2\times C_4^2):D_8$ | 
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.275.1, 8.0.7638125.1 | 
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed | 
| Degree 32 siblings: | data not computed | 
| Minimal sibling: | 16.4.7273157872520336328125.1 | 
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ | 
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content | 
|---|---|---|---|---|---|---|---|
| \(5\) | 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | 
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
| \(11\) | 11.4.1.0a1.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | 
| 11.1.4.3a1.2 | $x^{4} + 22$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
| 11.4.1.0a1.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 11.1.4.3a1.2 | $x^{4} + 22$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
| \(101\) | 101.2.1.0a1.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | 
| 101.1.2.1a1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 101.2.1.0a1.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 101.2.1.0a1.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 101.1.2.1a1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 101.2.1.0a1.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 101.2.2.2a1.2 | $x^{4} + 194 x^{3} + 9413 x^{2} + 388 x + 105$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | 
