Properties

Label 101.1.2.1a1.2
Base \(\Q_{101}\)
Degree \(2\)
e \(2\)
f \(1\)
c \(1\)
Galois group $C_2$ (as 2T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{2} + 202\) Copy content Toggle raw display

Invariants

Base field: $\Q_{101}$
Degree $d$: $2$
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $1$
Discriminant root field: $\Q_{101}(\sqrt{101\cdot 2})$
Root number: $-1$
$\Aut(K/\Q_{101})$ $=$$\Gal(K/\Q_{101})$: $C_2$
This field is Galois and abelian over $\Q_{101}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$100 = (101 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 101 }$.

Canonical tower

Unramified subfield:$\Q_{101}$
Relative Eisenstein polynomial: \( x^{2} + 202 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $2$
Galois group: $C_2$ (as 2T1)
Inertia group: $C_2$ (as 2T1)
Wild inertia group: $C_1$
Galois unramified degree: $1$
Galois tame degree: $2$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.5$
Galois splitting model:$x^{2} + 202$