Normalized defining polynomial
\( x^{16} - 2x^{14} + 5x^{12} - 2x^{10} + 12x^{8} - 2x^{6} + 5x^{4} - 2x^{2} + 1 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(48546204325249024\)
\(\medspace = 2^{34}\cdot 41^{4}\)
|
| |
Root discriminant: | \(11.04\) |
| |
Galois root discriminant: | $2^{23/8}41^{1/2}\approx 46.973526518941995$ | ||
Ramified primes: |
\(2\), \(41\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-1}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}-\frac{1}{4}a^{6}+\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}$, $\frac{1}{8}a^{13}-\frac{1}{8}a^{12}-\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{3}{8}a-\frac{1}{8}$, $\frac{1}{8}a^{14}-\frac{1}{8}a^{12}-\frac{1}{4}a^{8}-\frac{1}{4}a^{6}-\frac{3}{8}a^{2}-\frac{1}{8}$, $\frac{1}{16}a^{15}-\frac{1}{16}a^{14}-\frac{1}{16}a^{13}+\frac{1}{16}a^{12}-\frac{1}{8}a^{9}+\frac{1}{8}a^{8}+\frac{1}{8}a^{7}-\frac{1}{8}a^{6}+\frac{5}{16}a^{3}-\frac{5}{16}a^{2}-\frac{5}{16}a+\frac{5}{16}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( \frac{1}{4} a^{14} - \frac{1}{2} a^{12} + \frac{3}{2} a^{10} - a^{8} + 4 a^{6} - \frac{1}{2} a^{4} + \frac{11}{4} a^{2} - \frac{1}{2} \)
(order $4$)
|
| |
Fundamental units: |
$\frac{1}{2}a^{15}-\frac{3}{4}a^{13}+2a^{11}+\frac{1}{2}a^{9}+5a^{7}+3a^{5}+2a^{3}+\frac{7}{4}a$, $\frac{1}{2}a^{15}-\frac{3}{4}a^{13}+2a^{11}+6a^{7}+a^{5}+\frac{3}{2}a^{3}-\frac{5}{4}a$, $\frac{11}{16}a^{15}-\frac{1}{16}a^{14}-\frac{17}{16}a^{13}-\frac{1}{16}a^{12}+\frac{11}{4}a^{11}+\frac{3}{8}a^{9}-\frac{5}{8}a^{8}+\frac{57}{8}a^{7}-\frac{5}{8}a^{6}+\frac{11}{4}a^{5}-2a^{4}+\frac{35}{16}a^{3}-\frac{1}{16}a^{2}-\frac{5}{16}a-\frac{1}{16}$, $\frac{1}{8}a^{15}-\frac{1}{4}a^{14}-\frac{1}{4}a^{13}+\frac{1}{8}a^{12}+\frac{3}{4}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{5}{4}a^{8}+2a^{7}-\frac{5}{2}a^{6}-\frac{1}{4}a^{5}-\frac{7}{2}a^{4}+\frac{11}{8}a^{3}-a^{2}+\frac{1}{4}a-\frac{5}{8}$, $\frac{5}{16}a^{15}-\frac{1}{16}a^{14}-\frac{5}{16}a^{13}+\frac{5}{16}a^{12}+a^{11}-\frac{3}{4}a^{10}+\frac{5}{8}a^{9}+\frac{9}{8}a^{8}+\frac{31}{8}a^{7}-\frac{11}{8}a^{6}+2a^{5}+\frac{9}{4}a^{4}+\frac{29}{16}a^{3}-\frac{21}{16}a^{2}-\frac{5}{16}a-\frac{3}{16}$, $\frac{3}{16}a^{15}-\frac{3}{16}a^{14}-\frac{7}{16}a^{13}+\frac{7}{16}a^{12}+a^{11}-\frac{3}{4}a^{10}-\frac{5}{8}a^{9}-\frac{1}{8}a^{8}+\frac{17}{8}a^{7}-\frac{5}{8}a^{6}-a^{5}+\frac{1}{4}a^{4}-\frac{5}{16}a^{3}+\frac{25}{16}a^{2}-\frac{15}{16}a-\frac{9}{16}$, $\frac{3}{16}a^{15}-\frac{3}{16}a^{14}-\frac{1}{16}a^{13}+\frac{5}{16}a^{12}+\frac{1}{4}a^{11}-\frac{3}{4}a^{10}+\frac{9}{8}a^{9}+\frac{1}{8}a^{8}+\frac{15}{8}a^{7}-\frac{17}{8}a^{6}+\frac{9}{4}a^{5}+\frac{1}{4}a^{4}+\frac{7}{16}a^{3}-\frac{3}{16}a^{2}-\frac{9}{16}a+\frac{17}{16}$
|
| |
Regulator: | \( 143.309284462 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 143.309284462 \cdot 1}{4\cdot\sqrt{48546204325249024}}\cr\approx \mathstrut & 0.394980489231 \end{aligned}\]
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{-1}) \), 4.0.656.1, 8.0.13770752.1, 8.0.55083008.1, 8.0.27541504.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.8.22d1.2 | $x^{8} + 4 x^{7} + 10 x^{4} + 4 x^{2} + 2$ | $8$ | $1$ | $22$ | $C_2^2 \wr C_2$ | $$[2, 2, 3, \frac{7}{2}]^{2}$$ |
2.2.4.12a1.1 | $x^{8} + 4 x^{7} + 12 x^{6} + 22 x^{5} + 31 x^{4} + 30 x^{3} + 22 x^{2} + 10 x + 5$ | $4$ | $2$ | $12$ | $D_4$ | $$[2, 2]^{2}$$ | |
\(41\)
| 41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
41.2.2.2a1.2 | $x^{4} + 76 x^{3} + 1456 x^{2} + 456 x + 77$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
41.2.2.2a1.2 | $x^{4} + 76 x^{3} + 1456 x^{2} + 456 x + 77$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |