Normalized defining polynomial
\( x^{16} - 2 x^{15} - 18 x^{14} + 18 x^{13} + 163 x^{12} - 172 x^{11} - 552 x^{10} + 1347 x^{9} + 1266 x^{8} - 6786 x^{7} + 2547 x^{6} + 11246 x^{5} - 11672 x^{4} - 9291 x^{3} + 33042 x^{2} - 29141 x + 16381 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(483823969655762431707489=3^{8}\cdot 97^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{14} a^{14} + \frac{1}{7} a^{13} - \frac{1}{14} a^{12} - \frac{3}{14} a^{11} + \frac{1}{7} a^{10} + \frac{5}{14} a^{9} - \frac{3}{14} a^{8} - \frac{3}{7} a^{7} - \frac{3}{14} a^{6} + \frac{1}{14} a^{5} + \frac{2}{7} a^{4} + \frac{1}{14} a^{3} - \frac{5}{14} a^{2} - \frac{3}{7} a + \frac{3}{14}$, $\frac{1}{65884825562396432490453558187898} a^{15} + \frac{202902982179712455875276115459}{32942412781198216245226779093949} a^{14} + \frac{2589648246856253489303791437564}{32942412781198216245226779093949} a^{13} + \frac{774774339301924719901552129891}{32942412781198216245226779093949} a^{12} - \frac{14907100182843745304194101207802}{32942412781198216245226779093949} a^{11} - \frac{7937112358312501213638935645591}{32942412781198216245226779093949} a^{10} + \frac{3032463934171026718270594095341}{32942412781198216245226779093949} a^{9} - \frac{11001707852410600988211497312836}{32942412781198216245226779093949} a^{8} - \frac{1986849913807768426564692522633}{32942412781198216245226779093949} a^{7} + \frac{5798511916775894723845782809182}{32942412781198216245226779093949} a^{6} + \frac{13931095826349345767620678539584}{32942412781198216245226779093949} a^{5} - \frac{4036796726877004762459406273595}{32942412781198216245226779093949} a^{4} - \frac{15270561786064460884365386343880}{32942412781198216245226779093949} a^{3} + \frac{15566209596819385910674698674290}{32942412781198216245226779093949} a^{2} + \frac{14615551819881079966286567920102}{32942412781198216245226779093949} a - \frac{939693050660498305807418636751}{9412117937485204641493365455414}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1635044887083493}{25925487728830265582} a^{15} - \frac{2266218916099537}{25925487728830265582} a^{14} - \frac{28982100472406337}{25925487728830265582} a^{13} + \frac{3380228533810795}{12962743864415132791} a^{12} + \frac{243174892866235377}{25925487728830265582} a^{11} - \frac{83579489680520449}{25925487728830265582} a^{10} - \frac{368938399675886743}{12962743864415132791} a^{9} + \frac{1377627882526655127}{25925487728830265582} a^{8} + \frac{2402718408110796251}{25925487728830265582} a^{7} - \frac{3853528833812264616}{12962743864415132791} a^{6} + \frac{248620025616991945}{25925487728830265582} a^{5} + \frac{13011015059914101035}{25925487728830265582} a^{4} - \frac{3673169606597379325}{12962743864415132791} a^{3} - \frac{14729991011466854863}{25925487728830265582} a^{2} + \frac{45273357898236017427}{25925487728830265582} a - \frac{12615760837496252921}{25925487728830265582} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 329160.9111 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-291}) \), 4.2.28227.1 x2, 4.0.873.1 x2, \(\Q(\sqrt{-3}, \sqrt{97})\), 8.0.73926513.1, 8.0.695574560817.1, 8.0.7170871761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.8.6.2 | $x^{8} + 873 x^{4} + 235225$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |