Properties

Label 16.0.483...489.1
Degree $16$
Signature $[0, 8]$
Discriminant $4.838\times 10^{23}$
Root discriminant \(30.22\)
Ramified primes $3,97$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_4\wr C_2$ (as 16T42)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 18*x^14 + 18*x^13 + 163*x^12 - 172*x^11 - 552*x^10 + 1347*x^9 + 1266*x^8 - 6786*x^7 + 2547*x^6 + 11246*x^5 - 11672*x^4 - 9291*x^3 + 33042*x^2 - 29141*x + 16381)
 
Copy content gp:K = bnfinit(y^16 - 2*y^15 - 18*y^14 + 18*y^13 + 163*y^12 - 172*y^11 - 552*y^10 + 1347*y^9 + 1266*y^8 - 6786*y^7 + 2547*y^6 + 11246*y^5 - 11672*y^4 - 9291*y^3 + 33042*y^2 - 29141*y + 16381, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 2*x^15 - 18*x^14 + 18*x^13 + 163*x^12 - 172*x^11 - 552*x^10 + 1347*x^9 + 1266*x^8 - 6786*x^7 + 2547*x^6 + 11246*x^5 - 11672*x^4 - 9291*x^3 + 33042*x^2 - 29141*x + 16381);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 2*x^15 - 18*x^14 + 18*x^13 + 163*x^12 - 172*x^11 - 552*x^10 + 1347*x^9 + 1266*x^8 - 6786*x^7 + 2547*x^6 + 11246*x^5 - 11672*x^4 - 9291*x^3 + 33042*x^2 - 29141*x + 16381)
 

\( x^{16} - 2 x^{15} - 18 x^{14} + 18 x^{13} + 163 x^{12} - 172 x^{11} - 552 x^{10} + 1347 x^{9} + \cdots + 16381 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(483823969655762431707489\) \(\medspace = 3^{8}\cdot 97^{10}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(30.22\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}97^{3/4}\approx 53.535199825186666$
Ramified primes:   \(3\), \(97\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2\times C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\sqrt{-3}, \sqrt{97})\)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{14}a^{14}+\frac{1}{7}a^{13}-\frac{1}{14}a^{12}-\frac{3}{14}a^{11}+\frac{1}{7}a^{10}+\frac{5}{14}a^{9}-\frac{3}{14}a^{8}-\frac{3}{7}a^{7}-\frac{3}{14}a^{6}+\frac{1}{14}a^{5}+\frac{2}{7}a^{4}+\frac{1}{14}a^{3}-\frac{5}{14}a^{2}-\frac{3}{7}a+\frac{3}{14}$, $\frac{1}{65\cdots 98}a^{15}+\frac{20\cdots 59}{32\cdots 49}a^{14}+\frac{25\cdots 64}{32\cdots 49}a^{13}+\frac{77\cdots 91}{32\cdots 49}a^{12}-\frac{14\cdots 02}{32\cdots 49}a^{11}-\frac{79\cdots 91}{32\cdots 49}a^{10}+\frac{30\cdots 41}{32\cdots 49}a^{9}-\frac{11\cdots 36}{32\cdots 49}a^{8}-\frac{19\cdots 33}{32\cdots 49}a^{7}+\frac{57\cdots 82}{32\cdots 49}a^{6}+\frac{13\cdots 84}{32\cdots 49}a^{5}-\frac{40\cdots 95}{32\cdots 49}a^{4}-\frac{15\cdots 80}{32\cdots 49}a^{3}+\frac{15\cdots 90}{32\cdots 49}a^{2}+\frac{14\cdots 02}{32\cdots 49}a-\frac{93\cdots 51}{94\cdots 14}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $7$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( \frac{1635044887083493}{25925487728830265582} a^{15} - \frac{2266218916099537}{25925487728830265582} a^{14} - \frac{28982100472406337}{25925487728830265582} a^{13} + \frac{3380228533810795}{12962743864415132791} a^{12} + \frac{243174892866235377}{25925487728830265582} a^{11} - \frac{83579489680520449}{25925487728830265582} a^{10} - \frac{368938399675886743}{12962743864415132791} a^{9} + \frac{1377627882526655127}{25925487728830265582} a^{8} + \frac{2402718408110796251}{25925487728830265582} a^{7} - \frac{3853528833812264616}{12962743864415132791} a^{6} + \frac{248620025616991945}{25925487728830265582} a^{5} + \frac{13011015059914101035}{25925487728830265582} a^{4} - \frac{3673169606597379325}{12962743864415132791} a^{3} - \frac{14729991011466854863}{25925487728830265582} a^{2} + \frac{45273357898236017427}{25925487728830265582} a - \frac{12615760837496252921}{25925487728830265582} \)  (order $6$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{34\cdots 33}{94\cdots 14}a^{15}-\frac{53\cdots 47}{65\cdots 98}a^{14}-\frac{37\cdots 61}{65\cdots 98}a^{13}+\frac{28\cdots 76}{32\cdots 49}a^{12}+\frac{29\cdots 71}{65\cdots 98}a^{11}-\frac{67\cdots 13}{65\cdots 98}a^{10}-\frac{36\cdots 43}{32\cdots 49}a^{9}+\frac{44\cdots 51}{65\cdots 98}a^{8}+\frac{20\cdots 51}{65\cdots 98}a^{7}-\frac{74\cdots 48}{32\cdots 49}a^{6}+\frac{16\cdots 95}{65\cdots 98}a^{5}+\frac{24\cdots 69}{65\cdots 98}a^{4}-\frac{11\cdots 12}{32\cdots 49}a^{3}-\frac{41\cdots 21}{65\cdots 98}a^{2}+\frac{83\cdots 71}{65\cdots 98}a-\frac{67\cdots 57}{65\cdots 98}$, $\frac{32\cdots 71}{94\cdots 14}a^{15}-\frac{66\cdots 85}{32\cdots 49}a^{14}-\frac{34\cdots 77}{65\cdots 98}a^{13}+\frac{10\cdots 65}{32\cdots 49}a^{12}+\frac{20\cdots 11}{32\cdots 49}a^{11}-\frac{19\cdots 05}{65\cdots 98}a^{10}-\frac{74\cdots 06}{32\cdots 49}a^{9}+\frac{46\cdots 02}{32\cdots 49}a^{8}-\frac{29\cdots 15}{65\cdots 98}a^{7}-\frac{19\cdots 03}{32\cdots 49}a^{6}+\frac{21\cdots 04}{32\cdots 49}a^{5}+\frac{70\cdots 79}{65\cdots 98}a^{4}-\frac{59\cdots 63}{32\cdots 49}a^{3}-\frac{22\cdots 78}{32\cdots 49}a^{2}+\frac{20\cdots 09}{65\cdots 98}a-\frac{12\cdots 83}{65\cdots 98}$, $\frac{36\cdots 90}{47\cdots 07}a^{15}-\frac{42\cdots 50}{47\cdots 07}a^{14}-\frac{15\cdots 59}{94\cdots 14}a^{13}+\frac{16\cdots 81}{47\cdots 07}a^{12}+\frac{74\cdots 82}{47\cdots 07}a^{11}-\frac{29\cdots 99}{94\cdots 14}a^{10}-\frac{32\cdots 85}{47\cdots 07}a^{9}+\frac{36\cdots 23}{47\cdots 07}a^{8}+\frac{21\cdots 87}{94\cdots 14}a^{7}-\frac{26\cdots 42}{47\cdots 07}a^{6}-\frac{18\cdots 86}{47\cdots 07}a^{5}+\frac{13\cdots 85}{94\cdots 14}a^{4}-\frac{22\cdots 57}{47\cdots 07}a^{3}-\frac{11\cdots 29}{47\cdots 07}a^{2}+\frac{21\cdots 73}{94\cdots 14}a-\frac{70\cdots 70}{47\cdots 07}$, $\frac{15\cdots 47}{94\cdots 14}a^{15}-\frac{20\cdots 52}{47\cdots 07}a^{14}-\frac{26\cdots 99}{94\cdots 14}a^{13}+\frac{22\cdots 18}{47\cdots 07}a^{12}+\frac{12\cdots 12}{47\cdots 07}a^{11}-\frac{41\cdots 79}{94\cdots 14}a^{10}-\frac{44\cdots 86}{47\cdots 07}a^{9}+\frac{12\cdots 70}{47\cdots 07}a^{8}+\frac{17\cdots 47}{94\cdots 14}a^{7}-\frac{62\cdots 55}{47\cdots 07}a^{6}+\frac{31\cdots 97}{47\cdots 07}a^{5}+\frac{22\cdots 93}{94\cdots 14}a^{4}-\frac{10\cdots 50}{47\cdots 07}a^{3}-\frac{13\cdots 30}{47\cdots 07}a^{2}+\frac{59\cdots 25}{94\cdots 14}a-\frac{28\cdots 09}{94\cdots 14}$, $\frac{13\cdots 37}{47\cdots 07}a^{15}-\frac{12\cdots 98}{32\cdots 49}a^{14}+\frac{49\cdots 04}{32\cdots 49}a^{13}+\frac{16\cdots 30}{32\cdots 49}a^{12}+\frac{12\cdots 40}{32\cdots 49}a^{11}-\frac{12\cdots 05}{32\cdots 49}a^{10}-\frac{81\cdots 70}{32\cdots 49}a^{9}+\frac{30\cdots 89}{32\cdots 49}a^{8}+\frac{17\cdots 35}{32\cdots 49}a^{7}-\frac{19\cdots 18}{32\cdots 49}a^{6}+\frac{11\cdots 42}{32\cdots 49}a^{5}+\frac{59\cdots 27}{32\cdots 49}a^{4}-\frac{18\cdots 94}{32\cdots 49}a^{3}-\frac{12\cdots 97}{32\cdots 49}a^{2}+\frac{12\cdots 20}{32\cdots 49}a-\frac{12\cdots 15}{32\cdots 49}$, $\frac{53\cdots 72}{32\cdots 49}a^{15}+\frac{51\cdots 03}{65\cdots 98}a^{14}-\frac{92\cdots 19}{32\cdots 49}a^{13}-\frac{10\cdots 25}{32\cdots 49}a^{12}+\frac{11\cdots 27}{65\cdots 98}a^{11}+\frac{52\cdots 18}{32\cdots 49}a^{10}-\frac{12\cdots 38}{32\cdots 49}a^{9}+\frac{55\cdots 11}{65\cdots 98}a^{8}+\frac{10\cdots 83}{32\cdots 49}a^{7}-\frac{51\cdots 17}{32\cdots 49}a^{6}-\frac{18\cdots 97}{65\cdots 98}a^{5}+\frac{20\cdots 74}{32\cdots 49}a^{4}+\frac{39\cdots 01}{32\cdots 49}a^{3}-\frac{71\cdots 07}{65\cdots 98}a^{2}+\frac{30\cdots 00}{32\cdots 49}a-\frac{22\cdots 56}{32\cdots 49}$, $\frac{24\cdots 41}{65\cdots 98}a^{15}-\frac{40\cdots 36}{47\cdots 07}a^{14}-\frac{35\cdots 43}{65\cdots 98}a^{13}+\frac{28\cdots 37}{32\cdots 49}a^{12}+\frac{13\cdots 00}{32\cdots 49}a^{11}-\frac{53\cdots 61}{65\cdots 98}a^{10}-\frac{19\cdots 66}{32\cdots 49}a^{9}+\frac{17\cdots 13}{47\cdots 07}a^{8}-\frac{13\cdots 27}{65\cdots 98}a^{7}-\frac{55\cdots 94}{47\cdots 07}a^{6}+\frac{89\cdots 16}{32\cdots 49}a^{5}-\frac{19\cdots 53}{94\cdots 14}a^{4}+\frac{85\cdots 70}{47\cdots 07}a^{3}+\frac{46\cdots 07}{32\cdots 49}a^{2}-\frac{78\cdots 93}{65\cdots 98}a+\frac{31\cdots 59}{65\cdots 98}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 329160.9111 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 329160.9111 \cdot 1}{6\cdot\sqrt{483823969655762431707489}}\cr\approx \mathstrut & 0.1915809233 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 18*x^14 + 18*x^13 + 163*x^12 - 172*x^11 - 552*x^10 + 1347*x^9 + 1266*x^8 - 6786*x^7 + 2547*x^6 + 11246*x^5 - 11672*x^4 - 9291*x^3 + 33042*x^2 - 29141*x + 16381) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 2*x^15 - 18*x^14 + 18*x^13 + 163*x^12 - 172*x^11 - 552*x^10 + 1347*x^9 + 1266*x^8 - 6786*x^7 + 2547*x^6 + 11246*x^5 - 11672*x^4 - 9291*x^3 + 33042*x^2 - 29141*x + 16381, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 2*x^15 - 18*x^14 + 18*x^13 + 163*x^12 - 172*x^11 - 552*x^10 + 1347*x^9 + 1266*x^8 - 6786*x^7 + 2547*x^6 + 11246*x^5 - 11672*x^4 - 9291*x^3 + 33042*x^2 - 29141*x + 16381); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 2*x^15 - 18*x^14 + 18*x^13 + 163*x^12 - 172*x^11 - 552*x^10 + 1347*x^9 + 1266*x^8 - 6786*x^7 + 2547*x^6 + 11246*x^5 - 11672*x^4 - 9291*x^3 + 33042*x^2 - 29141*x + 16381); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_4\wr C_2$ (as 16T42):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_4\wr C_2$
Character table for $C_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{97}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-291}) \), 4.2.28227.1 x2, 4.0.873.1 x2, \(\Q(\sqrt{-3}, \sqrt{97})\), 8.0.73926513.1, 8.0.695574560817.1, 8.0.7170871761.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 8 siblings: 8.0.73926513.1, 8.0.695574560817.1
Degree 16 sibling: 16.4.505811081165674302215084889.1
Minimal sibling: 8.0.73926513.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{4}$ R ${\href{/padicField/5.8.0.1}{8} }^{2}$ ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ ${\href{/padicField/17.8.0.1}{8} }^{2}$ ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ ${\href{/padicField/23.8.0.1}{8} }^{2}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ ${\href{/padicField/41.8.0.1}{8} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.2.0.1}{2} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.4.2.4a1.2$x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$
3.4.2.4a1.2$x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$
\(97\) Copy content Toggle raw display 97.2.4.6a1.3$x^{8} + 384 x^{7} + 55316 x^{6} + 3544704 x^{5} + 85487766 x^{4} + 17723520 x^{3} + 1382900 x^{2} + 48097 x + 9549$$4$$2$$6$$C_4\times C_2$$$[\ ]_{4}^{2}$$
97.4.2.4a1.2$x^{8} + 12 x^{6} + 160 x^{5} + 46 x^{4} + 960 x^{3} + 6460 x^{2} + 800 x + 122$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)