Normalized defining polynomial
\( x^{16} + 11x^{14} + 78x^{12} + 304x^{10} + 313x^{8} - 412x^{6} - 78x^{4} + 303x^{2} + 1 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(44133664812763327950625\)
\(\medspace = 5^{4}\cdot 29^{8}\cdot 109^{4}\)
|
| |
Root discriminant: | \(26.02\) |
| |
Galois root discriminant: | $5^{1/2}29^{1/2}109^{1/2}\approx 125.7179382586272$ | ||
Ramified primes: |
\(5\), \(29\), \(109\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | 8.0.1927340725.1 |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{60}a^{12}+\frac{7}{30}a^{10}+\frac{11}{60}a^{8}+\frac{11}{60}a^{6}-\frac{13}{60}a^{4}-\frac{1}{2}a^{2}-\frac{11}{60}$, $\frac{1}{60}a^{13}+\frac{7}{30}a^{11}+\frac{11}{60}a^{9}+\frac{11}{60}a^{7}-\frac{13}{60}a^{5}-\frac{1}{2}a^{3}-\frac{11}{60}a$, $\frac{1}{204650520}a^{14}-\frac{1}{120}a^{13}-\frac{271597}{204650520}a^{12}-\frac{7}{60}a^{11}-\frac{37586563}{204650520}a^{10}-\frac{11}{120}a^{9}+\frac{2807477}{20465052}a^{8}-\frac{11}{120}a^{7}+\frac{18316333}{102325260}a^{6}+\frac{13}{120}a^{5}-\frac{12701309}{68216840}a^{4}+\frac{1}{4}a^{3}+\frac{19879879}{204650520}a^{2}-\frac{49}{120}a-\frac{28672693}{68216840}$, $\frac{1}{204650520}a^{15}+\frac{179228}{25581315}a^{13}-\frac{1}{120}a^{12}-\frac{4570223}{68216840}a^{11}-\frac{7}{60}a^{10}+\frac{15611467}{68216840}a^{9}-\frac{11}{120}a^{8}-\frac{15644321}{68216840}a^{7}-\frac{11}{120}a^{6}+\frac{2102543}{10232526}a^{5}+\frac{13}{120}a^{4}-\frac{31282751}{204650520}a^{3}+\frac{1}{4}a^{2}-\frac{245245}{20465052}a+\frac{11}{120}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{697691}{13643368}a^{15}-\frac{1090703}{204650520}a^{14}+\frac{22921085}{40930104}a^{13}-\frac{991913}{17054210}a^{12}+\frac{162178201}{40930104}a^{11}-\frac{84599129}{204650520}a^{10}+\frac{157179973}{10232526}a^{9}-\frac{328475207}{204650520}a^{8}+\frac{78370703}{5116263}a^{7}-\frac{68219779}{40930104}a^{6}-\frac{884630021}{40930104}a^{5}+\frac{51129244}{25581315}a^{4}-\frac{39899931}{13643368}a^{3}+\frac{139392733}{204650520}a^{2}+\frac{646376135}{40930104}a-\frac{145101703}{102325260}$, $\frac{697691}{13643368}a^{15}+\frac{1090703}{204650520}a^{14}+\frac{22921085}{40930104}a^{13}+\frac{991913}{17054210}a^{12}+\frac{162178201}{40930104}a^{11}+\frac{84599129}{204650520}a^{10}+\frac{157179973}{10232526}a^{9}+\frac{328475207}{204650520}a^{8}+\frac{78370703}{5116263}a^{7}+\frac{68219779}{40930104}a^{6}-\frac{884630021}{40930104}a^{5}-\frac{51129244}{25581315}a^{4}-\frac{39899931}{13643368}a^{3}-\frac{139392733}{204650520}a^{2}+\frac{646376135}{40930104}a+\frac{145101703}{102325260}$, $\frac{3082487}{40930104}a^{15}+\frac{1090703}{204650520}a^{14}+\frac{56307091}{68216840}a^{13}+\frac{991913}{17054210}a^{12}+\frac{1196078227}{204650520}a^{11}+\frac{84599129}{204650520}a^{10}+\frac{2322173579}{102325260}a^{9}+\frac{328475207}{204650520}a^{8}+\frac{2341883549}{102325260}a^{7}+\frac{68219779}{40930104}a^{6}-\frac{6375871489}{204650520}a^{5}-\frac{51129244}{25581315}a^{4}-\frac{182667439}{40930104}a^{3}-\frac{139392733}{204650520}a^{2}+\frac{4369312927}{204650520}a+\frac{196264333}{102325260}$, $\frac{27237739}{102325260}a^{15}+\frac{150096121}{51162630}a^{13}+\frac{2131039133}{102325260}a^{11}+\frac{1665400057}{20465052}a^{9}+\frac{8713056389}{102325260}a^{7}-\frac{1832044883}{17054210}a^{5}-\frac{2315778089}{102325260}a^{3}+\frac{672682667}{8527105}a$, $\frac{697691}{6821684}a^{15}+\frac{22921085}{20465052}a^{13}+\frac{162178201}{20465052}a^{11}+\frac{157179973}{5116263}a^{9}+\frac{156741406}{5116263}a^{7}-\frac{884630021}{20465052}a^{5}-\frac{39899931}{6821684}a^{3}+\frac{625911083}{20465052}a$, $\frac{815281}{13643368}a^{15}-\frac{208477}{25581315}a^{14}+\frac{33291587}{51162630}a^{13}-\frac{18398447}{204650520}a^{12}+\frac{939168277}{204650520}a^{11}-\frac{21887793}{34108420}a^{10}+\frac{3613672663}{204650520}a^{9}-\frac{172039763}{68216840}a^{8}+\frac{3427405723}{204650520}a^{7}-\frac{38051871}{13643368}a^{6}-\frac{677615578}{25581315}a^{5}+\frac{600268399}{204650520}a^{4}-\frac{23012283}{13643368}a^{3}+\frac{160117823}{102325260}a^{2}+\frac{2037373141}{102325260}a+\frac{44010113}{204650520}$, $\frac{2256503}{51162630}a^{15}-\frac{30617}{40930104}a^{14}+\frac{6880061}{13643368}a^{13}-\frac{4148077}{204650520}a^{12}+\frac{73101425}{20465052}a^{11}-\frac{9555611}{68216840}a^{10}+\frac{2940005249}{204650520}a^{9}-\frac{14054691}{17054210}a^{8}+\frac{3217401941}{204650520}a^{7}-\frac{23848911}{17054210}a^{6}-\frac{4050333611}{204650520}a^{5}+\frac{268993121}{204650520}a^{4}-\frac{493367261}{102325260}a^{3}+\frac{9321241}{40930104}a^{2}+\frac{2880047843}{204650520}a-\frac{259000103}{204650520}$
|
| |
Regulator: | \( 47218.1659606 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 47218.1659606 \cdot 1}{2\cdot\sqrt{44133664812763327950625}}\cr\approx \mathstrut & 0.272981407918 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{29}) \), 4.4.4205.1, 8.4.1927340725.1, 8.0.1927340725.1, 8.4.210080139025.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
\(29\)
| 29.4.2.4a1.2 | $x^{8} + 4 x^{6} + 30 x^{5} + 8 x^{4} + 60 x^{3} + 233 x^{2} + 60 x + 33$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
29.4.2.4a1.2 | $x^{8} + 4 x^{6} + 30 x^{5} + 8 x^{4} + 60 x^{3} + 233 x^{2} + 60 x + 33$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(109\)
| $\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
109.2.2.2a1.2 | $x^{4} + 216 x^{3} + 11676 x^{2} + 1296 x + 145$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
109.2.2.2a1.2 | $x^{4} + 216 x^{3} + 11676 x^{2} + 1296 x + 145$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |