Normalized defining polynomial
\( x^{16} + 8 x^{14} - 24 x^{13} + 88 x^{12} - 120 x^{11} + 648 x^{10} - 880 x^{9} + 1766 x^{8} + \cdots + 9406 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(3178904636022651044757504\)
\(\medspace = 2^{58}\cdot 3^{8}\cdot 41^{2}\)
|
| |
Root discriminant: | \(33.99\) |
| |
Galois root discriminant: | $2^{61/16}3^{1/2}41^{1/2}\approx 155.82222959264388$ | ||
Ramified primes: |
\(2\), \(3\), \(41\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_4$ |
| |
This field is not Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | unavailable$^{128}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17\cdots 21}a^{15}+\frac{24\cdots 54}{17\cdots 21}a^{14}+\frac{26\cdots 12}{17\cdots 21}a^{13}-\frac{66\cdots 18}{17\cdots 21}a^{12}-\frac{59\cdots 87}{17\cdots 21}a^{11}+\frac{10\cdots 45}{17\cdots 21}a^{10}-\frac{76\cdots 97}{17\cdots 21}a^{9}+\frac{36\cdots 16}{17\cdots 21}a^{8}-\frac{42\cdots 05}{17\cdots 21}a^{7}-\frac{70\cdots 75}{17\cdots 21}a^{6}-\frac{57\cdots 22}{17\cdots 21}a^{5}-\frac{51\cdots 99}{17\cdots 21}a^{4}-\frac{77\cdots 42}{17\cdots 21}a^{3}-\frac{52\cdots 05}{17\cdots 21}a^{2}+\frac{65\cdots 81}{17\cdots 21}a+\frac{74\cdots 80}{17\cdots 21}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{34}$, which has order $34$ (assuming GRH) |
| |
Narrow class group: | $C_{34}$, which has order $34$ (assuming GRH) |
| |
Relative class number: | $34$ (assuming GRH) |
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{97\cdots 38}{89\cdots 21}a^{15}+\frac{12\cdots 38}{89\cdots 21}a^{14}+\frac{32\cdots 74}{89\cdots 21}a^{13}-\frac{16\cdots 86}{89\cdots 21}a^{12}+\frac{36\cdots 50}{89\cdots 21}a^{11}+\frac{76\cdots 66}{89\cdots 21}a^{10}+\frac{24\cdots 08}{89\cdots 21}a^{9}-\frac{13\cdots 01}{89\cdots 21}a^{8}-\frac{71\cdots 84}{89\cdots 21}a^{7}-\frac{48\cdots 64}{89\cdots 21}a^{6}+\frac{43\cdots 24}{89\cdots 21}a^{5}-\frac{31\cdots 39}{89\cdots 21}a^{4}+\frac{47\cdots 44}{89\cdots 21}a^{3}-\frac{24\cdots 46}{89\cdots 21}a^{2}+\frac{63\cdots 60}{89\cdots 21}a-\frac{11\cdots 85}{89\cdots 21}$, $\frac{11\cdots 81}{17\cdots 21}a^{15}-\frac{71\cdots 50}{17\cdots 21}a^{14}+\frac{91\cdots 58}{17\cdots 21}a^{13}-\frac{31\cdots 07}{17\cdots 21}a^{12}+\frac{11\cdots 95}{17\cdots 21}a^{11}-\frac{17\cdots 96}{17\cdots 21}a^{10}+\frac{74\cdots 20}{17\cdots 21}a^{9}-\frac{11\cdots 62}{17\cdots 21}a^{8}+\frac{20\cdots 10}{17\cdots 21}a^{7}-\frac{37\cdots 83}{17\cdots 21}a^{6}+\frac{22\cdots 14}{17\cdots 21}a^{5}-\frac{50\cdots 56}{17\cdots 21}a^{4}+\frac{34\cdots 26}{17\cdots 21}a^{3}+\frac{10\cdots 81}{17\cdots 21}a^{2}+\frac{50\cdots 98}{17\cdots 21}a+\frac{68\cdots 51}{17\cdots 21}$, $\frac{40\cdots 04}{17\cdots 21}a^{15}+\frac{25\cdots 92}{17\cdots 21}a^{14}+\frac{26\cdots 80}{17\cdots 21}a^{13}-\frac{77\cdots 13}{17\cdots 21}a^{12}+\frac{26\cdots 25}{17\cdots 21}a^{11}-\frac{14\cdots 01}{17\cdots 21}a^{10}+\frac{19\cdots 58}{17\cdots 21}a^{9}-\frac{15\cdots 94}{17\cdots 21}a^{8}+\frac{23\cdots 72}{17\cdots 21}a^{7}-\frac{80\cdots 62}{17\cdots 21}a^{6}-\frac{17\cdots 48}{17\cdots 21}a^{5}-\frac{16\cdots 59}{17\cdots 21}a^{4}+\frac{11\cdots 64}{17\cdots 21}a^{3}+\frac{14\cdots 27}{17\cdots 21}a^{2}+\frac{32\cdots 14}{17\cdots 21}a+\frac{31\cdots 45}{17\cdots 21}$, $\frac{47\cdots 73}{10\cdots 29}a^{15}-\frac{58\cdots 58}{10\cdots 29}a^{14}+\frac{39\cdots 22}{10\cdots 29}a^{13}-\frac{14\cdots 06}{10\cdots 29}a^{12}+\frac{54\cdots 30}{10\cdots 29}a^{11}-\frac{98\cdots 55}{10\cdots 29}a^{10}+\frac{33\cdots 38}{10\cdots 29}a^{9}-\frac{62\cdots 32}{10\cdots 29}a^{8}+\frac{10\cdots 62}{10\cdots 29}a^{7}-\frac{17\cdots 29}{10\cdots 29}a^{6}+\frac{14\cdots 38}{10\cdots 29}a^{5}-\frac{20\cdots 53}{10\cdots 29}a^{4}+\frac{13\cdots 38}{10\cdots 29}a^{3}-\frac{25\cdots 54}{10\cdots 29}a^{2}+\frac{11\cdots 16}{10\cdots 29}a+\frac{12\cdots 65}{10\cdots 29}$, $\frac{98\cdots 97}{10\cdots 29}a^{15}-\frac{35\cdots 89}{10\cdots 29}a^{14}+\frac{66\cdots 64}{10\cdots 29}a^{13}-\frac{25\cdots 03}{10\cdots 29}a^{12}+\frac{86\cdots 14}{10\cdots 29}a^{11}-\frac{11\cdots 21}{10\cdots 29}a^{10}+\frac{55\cdots 82}{10\cdots 29}a^{9}-\frac{87\cdots 14}{10\cdots 29}a^{8}+\frac{12\cdots 52}{10\cdots 29}a^{7}-\frac{27\cdots 25}{10\cdots 29}a^{6}+\frac{16\cdots 46}{10\cdots 29}a^{5}-\frac{37\cdots 39}{10\cdots 29}a^{4}+\frac{36\cdots 90}{10\cdots 29}a^{3}+\frac{97\cdots 78}{10\cdots 29}a^{2}+\frac{51\cdots 60}{10\cdots 29}a+\frac{23\cdots 23}{10\cdots 29}$, $\frac{13\cdots 95}{17\cdots 21}a^{15}-\frac{55\cdots 98}{17\cdots 21}a^{14}+\frac{86\cdots 74}{17\cdots 21}a^{13}-\frac{35\cdots 24}{17\cdots 21}a^{12}+\frac{11\cdots 45}{17\cdots 21}a^{11}-\frac{15\cdots 14}{17\cdots 21}a^{10}+\frac{73\cdots 84}{17\cdots 21}a^{9}-\frac{12\cdots 71}{17\cdots 21}a^{8}+\frac{16\cdots 06}{17\cdots 21}a^{7}-\frac{36\cdots 45}{17\cdots 21}a^{6}+\frac{26\cdots 06}{17\cdots 21}a^{5}-\frac{49\cdots 98}{17\cdots 21}a^{4}+\frac{56\cdots 26}{17\cdots 21}a^{3}+\frac{79\cdots 35}{17\cdots 21}a^{2}+\frac{69\cdots 74}{17\cdots 21}a-\frac{88\cdots 25}{17\cdots 21}$, $\frac{36\cdots 13}{17\cdots 21}a^{15}-\frac{34\cdots 72}{17\cdots 21}a^{14}+\frac{23\cdots 96}{17\cdots 21}a^{13}-\frac{84\cdots 00}{17\cdots 21}a^{12}+\frac{28\cdots 63}{17\cdots 21}a^{11}-\frac{28\cdots 61}{17\cdots 21}a^{10}+\frac{18\cdots 22}{17\cdots 21}a^{9}-\frac{25\cdots 97}{17\cdots 21}a^{8}+\frac{33\cdots 54}{17\cdots 21}a^{7}-\frac{86\cdots 97}{17\cdots 21}a^{6}+\frac{41\cdots 78}{17\cdots 21}a^{5}-\frac{13\cdots 65}{17\cdots 21}a^{4}+\frac{13\cdots 56}{17\cdots 21}a^{3}+\frac{55\cdots 57}{17\cdots 21}a^{2}+\frac{22\cdots 02}{17\cdots 21}a+\frac{70\cdots 93}{17\cdots 21}$
|
| |
Regulator: | \( 11964.3106427 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 11964.3106427 \cdot 34}{2\cdot\sqrt{3178904636022651044757504}}\cr\approx \mathstrut & 0.277100174304 \end{aligned}\] (assuming GRH)
Galois group
$(C_2^3\times C_4):C_4$ (as 16T292):
A solvable group of order 128 |
The 26 conjugacy class representatives for $(C_2^3\times C_4):C_4$ |
Character table for $(C_2^3\times C_4):C_4$ |
Intermediate fields
\(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), \(\Q(\zeta_{16})^+\), 4.4.18432.1, \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\zeta_{48})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.0.16493020657882951871102976.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.58n1.725 | $x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 30$ | $16$ | $1$ | $58$ | 16T112 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$$ |
\(3\)
| 3.8.2.8a1.2 | $x^{16} + 4 x^{13} + 2 x^{12} + 8 x^{10} + 8 x^{9} + 5 x^{8} + 8 x^{7} + 12 x^{6} + 12 x^{5} + 8 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 7$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $$[\ ]_{2}^{8}$$ |
\(41\)
| 41.4.1.0a1.1 | $x^{4} + 23 x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
41.4.1.0a1.1 | $x^{4} + 23 x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
41.4.1.0a1.1 | $x^{4} + 23 x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
41.2.2.2a1.1 | $x^{4} + 76 x^{3} + 1456 x^{2} + 497 x + 36$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |